Practice Problems - Solutions

1. Calculate the following limit:

$$\lim_{h \to 0} \frac{2^{-1} - (2 - h)^{-1}}{h}$$

b) $\frac{1}{4}$

c) $-\frac{1}{2}$

d) 1

e) 0

2. Calculate the derivative of $\ln(4\sqrt{x})$ at the point x=1

 $\frac{1}{2}$

c) 1

3. If $y = x^2 e^{-x}$, calculate $\frac{dy}{dx}$ at x = 2.

b) $\frac{4}{e^2}$

c) $\frac{8}{e^2}$

4. Calculate the following integral:

$$\int_0^1 \frac{x}{\sqrt{1+x^2}} \, dx$$

a) $\frac{1}{2} \ln 2$

b) $\sqrt{2}$

c) $\frac{1}{\sqrt{2}}$ d) $\sqrt{2}-1$ e) $1-\frac{1}{\sqrt{2}}$

5. If the perimeter of a square is growing at the rate of 4 meters per minute, find the rate that the area is changing at the point in time when the perimeter is 8 meters?

Note: The units of these choices will be square meters per minute

a) 2

c) 8

e) 32

6. Simplify the following sum:

$$\sum_{i=1}^{8} \left(i^2 - (i-1)^2 \right)$$

a) 7

b) 8

c) 15

d) 32

64

7. Calculate the following area function:

$$F(x) = \int_0^x \frac{t}{t+1} \, dt$$

b) $\ln(x+1)$ **c)** $1 + \ln(x+1)$ **d)** $\frac{2x}{x+2}$

8. The following is a graph of a function y = f(x) on an interval from a to b

Which of the following would you expect to be true for all x between a and b?

(a) f'(x) = 0 and f''(x) > 0 (b) f'(x) < 0 and f''(x) > 0

c) f'(x) > 0 and f''(x) > 0

d) f'(x) < 0 and f''(x) < 0 **e)** f'(x) > 0 and f''(x) < 0

9. Let $f(x) = 2 - \sqrt{x}$ and $g(x) = \sqrt{x}$. Find the area of the region bounded by y = f(x), y = g(x) and the y-axis.

a) $\frac{1}{2}$

b) $\frac{2}{3}$

c) $\frac{3}{4}$

d) $\frac{4}{3}$

e) 2

10. Calculate the derivative of $\frac{2x+1}{x+1}$

a) 2

b) $\frac{1}{(x+1)^2}$

c) $\frac{1}{x+1}$

d) $\frac{-1}{x+1}$

e) $\frac{4x+3}{(x+1)^2}$

11. At what value of x will $y = (x-1)e^x$ have a point of inflection?

a) -1

b) 0

c) 1

d) 2

e) This function has no points of inflection

12. Which of the following limits of Riemann sums represents $\int_2^3 x^2 dx$?

 $\mathbf{a})$

$$\lim_{n\to\infty}\sum_{i=1}^n\left(\frac{i}{n}\right)^2\frac{1}{n}$$

b)

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(2 + \frac{i}{n}\right)^2 \frac{1}{n}$$

 $\mathbf{c})$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2i}{n}\right)^2 \frac{1}{n}$$

 $\mathbf{d})$

$$\lim_{n\to\infty}\sum_{i=1}^n \left(\frac{i}{n}\right)^2\frac{2}{n}$$

 $\mathbf{e})$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{3} \left(\frac{i}{n} \right)^{3} \frac{1}{n}$$

13. Find the area of the region bounded between the parabolas $y = x - x^2$ and $y = 7x - 7x^2$.

 $|\mathbf{a}| | 1$

b) 2

c) 4

d) 6

e) 7

14. Which one of the following functions is discontinuous at some point?

a) $f(x) = \frac{x}{x^2+1}$

b) $f(x) = (x-1)^{1/3}$

 $f(x) = \frac{x^2+1}{(x-1)^2}$

d) f(x) = |x - 1|

e) None of these

15. Calculate the following limit. You may assume that x is some positive number.				
		$\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$	- 3 -	
a) 0	b) $\frac{2}{3}x^{3/2} + C$	c) $\frac{1}{\sqrt{x}}$	$\boxed{\mathbf{d}) \frac{1}{2\sqrt{x}}}$	e) undefined
16. Calculate the	following integral:			
		$\int_0^3 \left(\frac{x}{3} + 1\right)^2 dx$		
a) $\frac{1}{3}$	b) 3	c) 7	d) 8	e) 9
17. The area of a square can be expressed as a function of the length of its diagonal by the formula $A = \frac{1}{2}x^2$. Suppose the diagonal length is increased from $x = 5$ cm to 5.2 cm. Then the value of the differential dA is given by:				
a) $\frac{1}{5}$ cm ²	b) $\frac{1}{2}$ cm ²	$\boxed{\mathbf{c})$ 1 cm ²	d) $\frac{51}{50}$ cm ²	e) 2 cm^2
18. Suppose the acceleration of an object is given by $a = \cos(\pi t)$. If the velocity is 0 at $t = 0$, find the formula for velocity at time t .				
a) $\sin(\pi t)$	$\mathbf{b)} \ \pi \sin(\pi t)$	c) $-\pi \sin(\pi t)$	$\mathbf{d)} \; -\frac{1}{\pi} \sin\left(\pi t\right)$	$\mathbf{e)} \frac{1}{\pi}\sin(\pi t)$
19. Which of the following gives the derivative of $f(x) = \frac{1}{x}$?				
a)		$\frac{\frac{1}{x+h} - \frac{1}{x}}{h}$		
b)		$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$		
c)		$\lim_{h \to 0} \frac{1}{1+h}$		
(d)		$\lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$		
e)		None of the above	е	

20. Find the derivative of the following function:

$$f(x) = \ln\left(\frac{x}{x+1}\right)$$

a) $\frac{1}{x(x+1)}$ **b)** $\frac{4x}{(x+1)^2}$ **c)** $\frac{x+1}{2x}$ **d)** $\ln\left(\frac{2}{(x+1)^2}\right)$ **e)** $\frac{1}{2x} - \frac{1}{x+1}$

21. Find the derivative of $y = e^{2\sqrt{x}}$

b) $e^{1/\sqrt{x}}$ **c)** $(2\sqrt{x}) e^{2\sqrt{x}-1}$ **d)** $(\sqrt{x}) e^{2\sqrt{x}}$ **e)** $e^{2\sqrt{x}}$

22. If we make the substitution $u=1+\sin\frac{x}{2}$ into the integral $\int_0^\pi \frac{\cos\frac{x}{2}}{1+\sin\frac{x}{2}} dx$, which of the following integrals will result?

a) $\frac{1}{2} \int_{1}^{2} \frac{du}{u}$

b) $\frac{1}{2} \int_0^{\pi} \frac{du}{u}$ c) $2 \int_1^2 \frac{du}{u}$ d) $2 \int_0^{\pi} \frac{du}{u}$ e) $\int_0^{\pi} \frac{du}{u}$

23. Calculate the integral:

$$\int \frac{e^x}{\left(e^x+1\right)^2} \, dx$$

 $\boxed{\mathbf{a}) \quad \frac{-1}{e^x + 1} + C}$

b) $2\ln(e^x+1)+C$ **c)** $\frac{-e^x}{e^x+1}$

e) $\frac{1}{3(e^x+1)^3}$

24. Calculate the derivative:

$$y = \tan^2 x$$

a) $\sec^4 x$

b) $2 \sec^4 x$

c) $2\tan^2 x \sec x$ d) $2\tan x \sec^2 x$ e) $\tan^2 x \sec^2 x$

25. The equation of a line tangent to a curve at a point is sometimes referred to as the linear approximation of the function. Find the linear approximation of $f(x) = \ln\left(\frac{1}{2}\left(e^x + 1\right)\right)$ at x = 0.

a) y = x

b) $y = \frac{1}{2}x$ **c)** y = 2x **d)** y = 2x + 1 **e)** $y = \frac{1}{2}x + 1$