

Volume of one section = $A(x) \Delta x$

Volume of all sections
$$= \int_{a}^{b} A(x) dx$$

For a solid of revolution, the cross-section is a circle. One section of volume is a disk. $A(x) = \pi r^2$

$$V = \int_{a}^{b} \pi(f(x))^{2} dx$$

We can use the Disk Method to find the volume of a sphere.

Let \mathcal{R} be the region between $f(x) = 2e - e^x$ and $g(x) = e^x$ for $0 \le x \le 1$

Revolve \mathcal{R} around the *x*-axis. Find the volume.

In general, if the region \mathcal{R} between two curves is revolved around the *x*-axis, any rectangular strip in \mathcal{R} will generate an inner disk and an outer disk. The region in between is called a *washer*.

