Function

Inverse

Multiply by 2

Multiply by 2	Divide by 2	
Function	Inverse	

Add 7

Function	Inverse
Multiply by 2	Divide by 2
Add 7	Subtract 7

Cube the number

Function	Inverse
Multiply by 2	Divide by 2
Add 7	Subtract 7
Cube the number	Take a cube root

Two functions are said to be *inverses* of each other if the functions cancel.

Function	Inverse
f(x) = 2x	$g(x) = \frac{x}{2}$
$\overline{f(x) = x + 7}$	g(x) = x - 7
$f(x) = x^3$	$g(x) = \sqrt[3]{x} = x^{1/3}$

Two	function	ns are	said t	o be	inverses	of each	other i	f the	func-
tions	s cancel.	g(f(x	c)) = c	x for	all x				

Function	Inverse
f(x) = 2x	$g(x) = \frac{x}{2}$
$\overline{f(x) = x + 7}$	g(x) = x - 7
$f(x) = x^3$	$g(x) = \sqrt[3]{x} = x^{1/3}$

$$f(x) = 2x \qquad g(x) = \frac{x}{2}$$
$$g(f(x)) = \frac{f(x)}{2} = \frac{2x}{2} = x$$
$$g(f(x)) = x \quad \text{for all } x$$

$$f(x) = x + 7$$
 $g(x) = x - 7$
 $g(f(x)) = f(x) - 7 = (x + 7) - 7 = x$
 $g(f(x)) = x$ for all x

Formal definition of inverse:

Two functions, f and g are said to be inverses of each other if:

$$f(g(x)) = x$$
 for all x in the domain of g

and

g(f(x)) = x for all x in the domain of f

Notation:

If f and g are inverses of each other, then we use the notation $f^{-1}(x)$ to mean g(x)

Function	Inverse
f(x) = 2x	$f^{-1}(x) = \frac{x}{2}$
f(x) = x + 7	$f^{-1}(x) = x - 7$
$f(x) = x^3$	$f^{-1}(x) = \sqrt[3]{x} = x^{1/3}$

Warning

Do not confuse $f^{-1}(x)$ with $(f(x))^{-1} = \frac{1}{f(x)}$

Function	Inverse	Reciprocal
f(x) = 2x	$f^{-1}(x) = \frac{x}{2}$	$\frac{1}{f(x)} = \frac{1}{2x}$
f(x) = x + 7	$f^{-1}(x) = x - 7$	$\frac{1}{f(x)} = \frac{1}{x+7}$
$f(x) = x^3$	$f^{-1}(x) = \sqrt[3]{x}$	$\frac{1}{f(x)} = \frac{1}{x^3} = x^{-3}$

If the black graph is y = f(x) then the red graph is $y = f^{-1}x$

$$y = f^{-1}(x)$$
$$f(y) = f\left(f^{-1}(x)\right)$$

$$y = f^{-1}(x)$$
$$f(y) = f(f^{-1}(x))$$
$$f(y) = x$$

The graph of $y = f^{-1}(x)$ is really the graph of x = f(y)

$$y = f(x)$$

If y is a function of x, this is supposed to mean that for every x there is **one unique** y value.

$$f(x) = x^2 \qquad \qquad g(x) = \sqrt{x}$$

Will g(f(x)) equal x ?

$$f(x) = x^2 \qquad \qquad g(x) = \sqrt{x}$$

Will g(f(x)) equal x ?

$g(f(1)) = g(1) = \sqrt{1} = 1$	Yes
$g(f(2)) = g(4) = \sqrt{4} = 2$	Yes

$$g(f(3)) = g(9) = \sqrt{9} = 3$$
 Yes

$$f(x) = x^2 \qquad \qquad g(x) = \sqrt{x}$$

Will g(f(x)) equal x ?

$$g(f(-1)) = g(1) = \sqrt{1} = 1$$
 No

$$g(f(-2)) = g(4) = \sqrt{4} = 2$$
 No

$$g(f(-3)) = g(9) = \sqrt{9} = 3$$
 No

If f(a) = f(b) even though $a \neq b$ then the function f is said to be *many-to-one*. Such functions do not have inverses.

If $a \neq b$ implies that $f(a) \neq f(b)$ then the function f is said to be *one-to-one*. This is the only type of function that will have an inverse.

If a function is not *one-to-one*, we can restrict the domain so that it is one-to-one.

 $f(x) = x^2$ with unrestricted domain

The sine function is not one-to-one

2 4

The domain of the sine function can be restricted so that it is one-to-one

