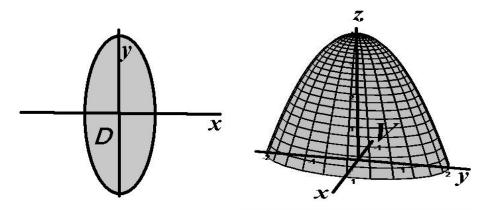
Exam 2

1. (16 points) Suppose w = f(x, y, z) where x, y and z are given by:


$$x = \rho \cos \theta \sin \phi$$
 $y = \rho \sin \theta \sin \phi$ $z = \rho \cos \phi$

You are not given the formula for how w depends on x, y and z, but you are given the following partial derivatives:

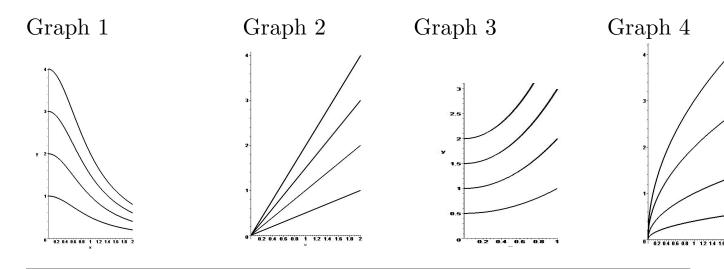
$$\frac{\partial w}{\partial x} = 3$$
 $\frac{\partial w}{\partial y} = 2$ $\frac{\partial w}{\partial z} = 1$

Find $\frac{\partial w}{\partial \theta}$ when $\rho = 2$, $\theta = \frac{\pi}{2}$ and $\phi = \frac{\pi}{2}$

2. (16 points) Let \mathcal{D} be the region in the xy plane inside the ellipse described by the equation $x^2 + \frac{y^2}{4} = 1$. Let \mathcal{V} be the three dimensional region that is above \mathcal{D} but below the surface $z = 4 - 4x^2 - y^2$

Express the volume of \mathcal{V} as a double integral in the $\iint dy dx$ order of integration.

3. (24 points) Again, let $z = 4 - 4x^2 - y^2$.


a) Find a vector $\vec{\mathbf{n}}$ that is perpendicular to the surface at $(\frac{1}{2}, 1, 2)$.

b) Find the equation of the plane tangent to this surface at $(\frac{1}{2}, 1, 2)$.

4. (24 points) For each of the following double integrals, reverse the order of integration. There are no antiderivatives to calculate here.

a)
$$\int_{-2}^{0} \int_{0}^{y+2} f(x,y) \, dx \, dy$$
 b) $\int_{0}^{1} \int_{3}^{4-x^2} f(x,y) \, dy$

5. Which of the following graphs show some of the level sets of the function $f(x, y) = \frac{y}{1+x^2}$ for $x \ge 0$ and $y \ge 0$

6.	For $f(x,$	y, z) =	= 6x + y + 2z	, calculate	the	directional
der	ivative D_{i}	$\mathbf{\vec{u}} f$ where	$\mathbf{\vec{u}} = \frac{1}{3} \langle 1, 2, 2 \rangle$	$2\rangle$		

a) 1	b) 2	c) 3	d) 4	e) 6

7. Let g(x, y, z) = 2x + 2y + z. The value of the directional derivative $D_{\vec{\mathbf{v}}} g$ depends on the direction of $\vec{\mathbf{v}}$. Which of the following is the largest possible value of $D_{\vec{\mathbf{v}}} g$?

a) 3 b) 4	c) 6	d) 8	e) 9	
-----------	-------------	--------------	--------------	--

8. Calculate the following double integral: