
Arc length Parametrization

The equation r⃗ = ⟨cos t, sin t, t⟩ describes helical motion around the z-axis. The distance
traveled along this path between time= 0 and time=π would be given by:
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If we looked at the distance traveled between time= 0 and time=t, we would obtain:
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We could solve for t in terms of s
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r⃗ =

⟨
cos

t√
2
, sin

t√
2
,

t√
2

⟩
Instead of expressing position in terms of time, we have expressed it in terms of how far
along the curve we are. This is called an arc length parametrization. Take a look at the
derivative.
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This is a tangent vector because d⃗r

ds = 1√
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⟨− sin t, cos t, t⟩ = 1

|v⃗| v⃗. Furthermore, this is a

unit tangent vector. We can see this more generally from the Chain Rule:
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If we let v = |v⃗| then, v d⃗r
ds = v⃗ and d⃗r

ds = v⃗
v = T⃗. This is no easier than getting the unit

tangent vector directly from T⃗ = v⃗
v . However, the vector dT⃗

ds will always be perpendicular

to the curve. We know this because T⃗ • T⃗ = 1 so d
dt (T⃗ • T⃗) = 0. The Product Rule then

implies that T⃗ • dT⃗
ds = 0. In the case of the helical path,
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and now you can verify by dot product that this is perpendicular to the unit tangent vector
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⟨− sin t, cos t, t⟩. dT⃗

ds points in the direction of dT⃗
dt because the Chain Rule says:
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So, both dT⃗
ds and dT⃗

dt and perpendicular to the tangent line. What is the significance of
the length of these vectors? In both cases, we are looking at the rate at which the tangent
vector T⃗ changes. However, T⃗ always has the same length, so any change is due to a
change in direction. The faster the tangent vector T⃗ changes direction, the bigger its
derivative. Consider the following example:

r⃗ = ⟨x0 + at, y0 + bt, z0 + ct⟩

This is the vector equation of a straight line.
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Since a, b and c are constant, it follows that both dT⃗
ds and dT⃗

dt are zero. This makes sense

because for a straight line, T⃗ never changes it’s length or its direction as we move along
the graph.

Curvature

Now let’s consider cases where the graph actually curves around. Let’s restrict the dis-
cussion to two dimensions for the moment. If ϕ is the angle that T⃗ makes with i⃗, the
magnitude of the derivative dϕ

ds is called the curvature.
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This is related to dT⃗
ds by the Chain Rule. If T⃗ = ⟨cosϕ, sinϕ⟩, then
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since N⃗ = ⟨− sinϕ, cosϕ⟩ is a unit vector perpendicular to T⃗.∣∣∣∣∣dT⃗ds
∣∣∣∣∣ = |⟨− sinϕ, cosϕ⟩|
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So, the curvature is the length of dT⃗
ds . Since we already know that dT⃗

dt = v dT⃗
ds it follows

that |T⃗′(t)| = vκ, so

κ =
|T ′(t)|

v

The vector dT⃗
ds will be called the curvature vector. It is perpendicular to the tangent to

the curve and it’s length is the curvature.

Let’s do an example where we make use of the formula κ = |T⃗′(t)|
v .



Curvature of a Circle

The following vector equation describes a circle of radius α in the xy plane centered arund
the origin:

r⃗ = ⟨α cos t, α sin t⟩

The velocity vector, speed and unit tangent vectors are given by;
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= ⟨−α sin t, α cos t⟩ v = |v⃗| = α T⃗(t) =
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v
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The curvature is therefore:

κ =
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v
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v
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So, the bigger the radius, the smaller the curvature. We can also rewrite this relationship
as α = 1

κ . For a circle, this quantity is constant. For other curves, the quatity 1
κ is called

the radius of curvature and may vary from point to point.

Tangential and Normal Components of Acceleration

For the circle, the acceleration vector a⃗ = dv⃗
dt is perpendicular to the the tangent. For

curves that are not necessarilty circles, a⃗ has both a tangential and a normal component.
The normal component is related to the curvature. To see this, start with v⃗ = vT⃗ and
then take the derivative to get the accelation.

a⃗ =
dv⃗

dt
=

d

dt
(vT⃗(t)) = v′T⃗+ vT⃗′(t)

We already know that dT⃗
ds = vκN⃗ so,

a⃗ = v′T⃗+ v2κN⃗

Thus, v′ is the tangential component of acceleration and v2κ is the normal component of
acceleration. We can use this to get an alternative formula for the curvature.

v⃗ × a⃗ = v⃗ × (v′T⃗+ v2κN⃗) = v′v⃗ × T⃗+ v2κv⃗ × N⃗

The vector v⃗ × T⃗ = vT⃗× T⃗ is the zero vector, so we are left with:

v⃗ × a⃗ = v2κv⃗ × N⃗ = v2κ(vT⃗× N⃗) = v3κT⃗× N⃗

|v⃗ × a⃗| = v3κ|T⃗× N⃗| = v3κ

This gives us the following formula for curvature:

κ =
|v⃗ × a⃗|
v3



We have already calculated the curvature of a circle, but let’s see how this formula would
work in that case. Since r⃗ = (α cos t)⃗i+ (α sin t)⃗j it follows that
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d⃗r

dt
= (−α sin t)⃗i+ (α cos t)⃗j a⃗ =
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This agrees with the formula we obtained for the curvature when we used κ = T⃗′(t)
v and is

approximately the same amount of work. However, the formula κ = |v⃗×a⃗|
v3 is much more

practical for other curves. Let’s try calculating the curvature for the ellipse.

Curvature of the Ellipse

The following equation describes an ellipse in the xy plane, centered around the origin.

r⃗ = (α cos t)⃗i+ (β sin t)⃗j

Let’s calculate the curvature:

v⃗ = (−α sin t)⃗i+ (β cos t)⃗j a⃗ = (−α cos t)⃗i+ (−β sin t)⃗j v⃗ × a⃗ = αβk⃗

κ =
|v⃗ × a⃗|
v3

=
αβ(

α2 sin2 t+ β2 cos2 t
)3/2

If α = β then κ is constant. However this is the case of a circle and we have already dealt
with that case. So, let’s take α ̸= β, say α > β. Now the curvature varies from point to
point. when is the curvature a maximum?

κ will be maximized when f(t) = α2 sin2 t + β2 cos2 t is minimized. Start by rewriting
f(t) = β2 + (α2 − β2) sin2 t. Since 0 ≤ sin2 t ≤ 1, it follows that:

β2 ≤ f(t) ≤ α2

The minimum f(t) = β2 occurs when t = nπ, so maximum curvature is κ=
αβ

(β2)3/2
= α

β2 .

The maximum f(t) = α2 occurs when t = 2n+1
2 π, so minimum curvature is κ=

αβ

(α2)3/2
= β

α2 .

Circle of Curvature

The radius of curvature was defined as R = 1
κ . For the circle, this was a constant. What

does this mean for other curves? Let’s go back to the ellipse. The maximum curvature

was κ = α
β2 so this means the the minimum radius of curvature is R = β2

α . Let’s look at
a specific example. Suppose α = 2 and β = 1. This ellipse can also be described by the

equation x2

4 + y2

1 = 1. The vertices (2, 0) and (−2, 0) occur at t = 0 and t = π respectively,
so we get a minimum radius of curvature R = 1

2 at these points. The minimum curvature

was κ = β
α2 so the maximum radius of curvature will be R = α2

β = 22

1 = 4. The vertices



(0, 1) and (0, −1) at t = π
2 and t = 3π

2 will get a maximum radius of curvature of R = 4
at these points.

We define the circle of curvature at a point on a curve in the following way. If R is the
radius of curvature at that point, go a distance of R on the concave side of the normal
line through that point (perpendicular to the tangent line) and draw a circle of radius
R at the point. So, the circles of curvature at the vertices (2, 0) and (−2, 0) would be(
x− 3

2

)2
+ y2 = 1

4 and
(
x+ 3

2

)2
+ y2 = 1

4 . Take a look at the graphs:

We can see that when we draw the circle of curvature at a point, we get a circle that is
tangent to the curve. Let’s try this at a different point. At t = π

2 , we are at the vertex
(0, 1) and the radius of curvature is R = 4. So, to draw the circle of curvature, we go
down a distance of 4 from this point and draw the circle of radius 4 at this lower point.
The equation of this circle of curvature would be:

x2 + (y + 3)2 = 16

Here is the graph:

Again, we see that the circle of curvature at (0, 1) is a circle tangent to this point.

Curvature Example - Helix

Earlier, we looked at the helix described by the equation:

r⃗ = ⟨cos t, sin t, t⟩



Let’s calculate the curvature using the formula κ = |v⃗×a⃗|
v3

v⃗ = ⟨− sin t, cos t, 1⟩ a⃗ = ⟨− cos t, − sin t, 0⟩

|v⃗| =
√
2 |v⃗ × a⃗| = |⟨sin t, cos t, −1⟩| =

√
2

κ =

√
2

(
√
2)3

=

√
2

2
√
2
=

1

2

This is a case where we could have used the curvature vector directly. We saw earlier that:
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and the length of this vector is 1
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