Derivatives of Vector-Valued Functions
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Example: If £(¢) = (sint, cos2t) then /() = (cost, —2sin 2t)
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f(t+h)=(x(t+h), y(t+ h))




Change In Position = f(¢ + h) — £(¢)
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fit+h)-f(1)













tangent




f(t) = (3—t, 4t — ¢?)




f(t) = (3—t, 4t — ¢?)
f(1) = (-1, 2)
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f(t) = (3—t, 4t — ¢?)




f(t) = (3—t, 4t — ¢?)




f(t) = (3cost, 3sint, ¢) f/(t) = (—3sint, 3cost, 1)







Change In Position = f(¢ + h) — £(¢)
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distance = |£(t + k) — £(¢)]
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distance  |F(¢ + h) — £(?)]

time h
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Instantaneous speed:

f(t+h) —£(t)
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If position as a function of time is:

= f(t)

Then the velocity vector is:

The speed is:
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(—3sint, 3cost, 1)
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r = (3cost, 3sint, t) 7

| = +/(—3sint)2 + (3cost)2 + 12 = V10
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If position as a function of time is:

= f(t)
Then the velocity vector is:
. dr
V=—
dt

The acceleration vector is the derivative of the velocity vector
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r = (3cost, 3sint, t) \_f’:d—;:<—381nt, 3cost, 1)

a=— = (—3cost, —3sint, 0)




Vv = (—3sint, 3cost, 1) a= (—3cost, —3sint, 0)

vea=29sintcost —9sintcost =0




Theorem: If an object is traveling at constant speed then the
acceleration vector is perpendicular to the velocity vector at all
points.




Theorem: If an object is traveling at constant speed then the
acceleration vector is perpendicular to the velocity vector at all
points.
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Theorem: If an object is traveling at constant speed then the
acceleration vector is perpendicular to the velocity vector at all
points.
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Theorem: If an object is traveling at constant speed then the
acceleration vector is perpendicular to the velocity vector at all
points.
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Vev=C?
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Theorem: If an object is traveling at constant speed then the
acceleration vector is perpendicular to the velocity vector at all
points.
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F=(t t, 4—t) v=(1,1, =2t) a=(0,0, —2)

S)y=0




Att=1, v=(1,1, =20 &=(0, 0, —2)

S)y=0
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If & = ar + a,, then:

i, =4a—ar = (0, 0, —2>_<



©(t) = (cost, sint, V2 cost)




