Embry-Riddle Aeronautical University MA 243 Calculus III

Exam II

1. The volume of a cylinder is given by the formula $V = \pi r^2 h$. Suppose the radius and the height are both growing with time. In particular, suppose that the radius is growing at 2 meters/second and the height is growing at 3 meters/second. Use the *Chain Rule for Partial Derivatives* to calculate $\frac{dV}{dt}$ (the rate at which the volume is growing) when the radius is r = 1 meter and the height is h = 10 meters.

2. Let f(x, y) = 2 + 2x - y

a) Draw some of the level sets of f(x, y) on an x-y axis.

b) Let $\vec{\mathbf{v}} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle$. Calculate the directional derivative $D_{\vec{\mathbf{v}}} f$

c) Find a unit vector $\vec{\mathbf{u}}$ that makes the directional derivative $D_{\vec{\mathbf{u}}}f$ as large as possible.

d) Find the largest possible value of the directional derivative of this function f.

3. Let T be the triangle in the xy plane with vertices (0,0), (1,1) and (1,0). Calculate the integral: $\iint_T e^{-x^2} dA$

4. Let G be the region in the xy plane that is bounded by the curves $y = 2x - 2x^2$ and $y = x^2 - x$. Calculate the integral $\iint_G 1 dA$

5. The following equation describes a paraboloid:

$$(x-2)^2 + (y-2)^2 + z = 4$$

Find the equation of the plane that is tangent to this paraboloid at (x, y, z) = (3, 3, 2)

6. Let \mathcal{V} be the three dimensional region that is above the xy plane but bounded from above by the paraboloid described in problem 5. Express the volume of \mathcal{V} as a double integral. Do not calculate any antiderivatives. I am only interested in the correct limits of integration.

7. Reverse the order of integration:

$$\int_0^1 \int_{e^y}^e f(x,y) \, dx \, dy$$

8. Reverse the order of integration:

$$\int_0^\infty \int_{-\sqrt{x}}^{\sqrt{x}} f(x,y) \, dy \, dx$$