Embry-Riddle Aeronautical	University	Dr. E. Jacobs
MA 243 Calculus III	Exam III	Sample Exam

1. Let Q be the region in the xy plane that is above the x-axis but inside the ellipse $x^2 + \frac{y^2}{4} = 1$. Find the y-coordinate of the centroid.

2. Let \mathcal{D} be the region in the *xy*-plane that is bounded by $y = x^2$ and $x = y^2$. Find the *surface area* of the portion of the plane z = 4 + x + y that is directly above \mathcal{D} .

3. Let \mathcal{T} be the triangle with vertices (0, 0, 0), (3, 3, 0) and (0, 3, 0). Express the volume of the region below the plane z = 3 - y and above \mathcal{T} as a triple integral. Use the $\iiint() dz dy dx$ order of integration. Set-up only. No antiderivatives necessary.

4. Convert to polar coordinates and calculate the double integral.

$$\int_0^\infty \int_{-y}^y e^{-x^2 - y^2} \, dx \, dy$$

5. Use a triple integral to calculate the volume of the tetrahedron with vertices (0, 0, 0), (0, 0, 2), (0, 2, 2) and (2, 2, 2)

6. Let T be the region bounded by the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2. Express the volume of T as a triple integral in cylindrical coordinates. Set-up only. No antiderivatives necessary.

7. Let \mathcal{H} be the three dimensional region inside the sphere described by the equation $x^2 + y^2 + z^2 = 4$ for $y \ge 0$. Express $\int \int \int_{\mathcal{H}} y \, dV$ in spherical coordinates and also in cylindrical coordinates. Set-up only. No antiderivatives necessary.