More on Surfaces Instructor: Elliott Jacobs

 $d = \text{distance between } \mathbf{u} = (u_1, u_2) \text{ and } \mathbf{v} = (v_1, v_2)$

$$d^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2$$

$$d = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2}$$

 $\mathbf{u} = (u_1, u_2, u_3)$ $\mathbf{v} = (v_1, v_2, v_3)$ $d = \text{distance between } \mathbf{u} \text{ and } \mathbf{v}$

$$d^2 = d_1^2 + d_2^2$$

$$d^2 = d_1^2 + d_2^2 = d_1^2 + (v_3 - u_3)^2$$

$$d_1^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2$$

$$d^{2} = d_{1}^{2} + d_{2}^{2} = (v_{1} - u_{1})^{2} + (v_{2} - u_{2})^{2} + (v_{3} - u_{3})^{2}$$

$$\mathbf{u} = (u_1, \ u_2, \ u_3) \qquad \mathbf{v} = (v_1, \ v_2, \ v_3)$$

$$d = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2}$$

$$v_3 \qquad v_4 \qquad v_4 \qquad v_2 \qquad v_2 \qquad v_4 \qquad$$

$$\mathbf{u} = (u_1, u_2, u_3) \qquad \mathbf{v} = (v_1, v_2, v_3)$$

$$d = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2}$$

$$= \sqrt{\sum_{i=1}^{3} (v_i - u_i)^2}$$

$$\mathbf{u} = (u_1, u_2, u_3, u_4)$$
 $\mathbf{v} = (v_1, v_2, v_3, v_4)$

$$d = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2 + (v_4 - u_4)^2}$$
$$= \sqrt{\sum_{i=1}^{4} (v_i - u_i)^2}$$

$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 $\mathbf{v} = (v_1, v_2, \dots, v_n)$

$$d = \sqrt{\sum_{i=1}^{n} (v_i - u_i)^2}$$

Dist between **P** and **P**₀ = $\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$

$$\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} = a$$

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

Sketch the sphere described by the equation:

$$(x-1)^2 + (y+2)^2 + z^2 = 4$$

Sketch the sphere described by the equation:

$$(x-1)^2 + (y+2)^2 + z^2 = 4$$

Rewrite as:

$$(x-1)^2 + (y-(-2))^2 + (z-0)^2 = 2^2$$

and compare with:

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

The radius is a=2 and the center is (1, -2, 0)

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

The radius is a=2 and the center is (1, -2, 0) First draw the center at the correct location:

$$(x-1)^2 + (y-(-2))^2 + (z-0)^2 = 2^2$$

The radius is a=2 and the center is (1, -2, 0)Next draw the sphere of radius 2 around this center:

Sketch the surface described by the equation:

$$x^2 + y^2 + z^2 = 4z$$

Sketch the surface described by the equation:

$$x^2 + y^2 + z^2 = 4z$$

We must first write the equation in the form:

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

$$x^{2} + y^{2} + z^{2} = 4z$$

$$x^{2} + y^{2} + z^{2} - 4z = 0$$

$$x^{2} + y^{2} + z^{2} - 4z + 4 = 4$$

$$x^{2} + y^{2} + (z - 2)^{2} = 2^{2}$$

This is a sphere of radius 2 centered around (0, 0, 2)

$$x^{2} + y^{2} + z^{2} = 4z$$
$$x^{2} + y^{2} + (z - 2)^{2} = 2^{2}$$

This is a sphere of radius 2 centered around (0, 0, 2)

Find the equation of a cylinder of radius 2 centered around the y-axis.

Let (x, y, z) be any point on the cylinder.

Drop a perpendicular from (x, y, z) to the y-axis.

$$\sqrt{(x-0)^2 + (y-y)^2 + (z-0)^2} = 2$$

$$x^2 + z^2 = 4$$

$$x^2 + z^2 = 4$$

$$z = 1 - y^2$$

$$z = 1 - y^2$$

