Basic Vector Operations Dr. Elliott Jacobs

(x, y)

(x, y) can be represented as a point in the plane

A pair of numbers can be represented by an arrow.

A quantity with both magnitude and direction is called a vector

A pair of numbers can be represented by an arrow.

A quantity with both magnitude and direction is called a *vector*

Calculate the length of $\vec{\mathbf{v}}$ with the distance formula $|\vec{\mathbf{v}}| = \sqrt{3^2 + 1^2} = \sqrt{10}$

Any vector parallel to $\vec{\mathbf{v}}$ having the same length is considered to be the same as $\vec{\mathbf{v}}$, even if the tail of the vector does not begin at the origin.

Let θ be the angle that a vector $\vec{\mathbf{v}} = \langle x, y \rangle$ makes with the *x*-axis. $r = |\vec{\mathbf{v}}| = \sqrt{x^2 + y^2}$ is the length.

Let θ be the angle that a vector $\vec{\mathbf{v}} = \langle x, y \rangle$ makes with the *x*-axis. $r = |\vec{\mathbf{v}}| = \sqrt{x^2 + y^2}$ is the length.

Vectors are easily generalized to higher dimension.

$$\vec{\mathbf{v}} = \langle 2, \, 4, \, 3 \rangle$$

Definition of Scalar Multiplication

Let $\vec{\mathbf{v}} = \langle x, y \rangle$. Let c be a scalar (in other words, c is a number).

$$c\vec{\mathbf{v}} = c\langle x, y \rangle = \langle cx, cy \rangle$$

Let
$$\vec{\mathbf{v}} = \langle x, y, z \rangle$$

 $c\vec{\mathbf{v}} = c\langle x, y, z \rangle = \langle cx, cy, cz \rangle$

More generally, if $\vec{\mathbf{v}} = \langle v_1, v_2, \dots, v_n \rangle$ then

$$c\vec{\mathbf{v}} = \langle cv_1, \, cv_2, \dots, cv_n \rangle$$

Definition of Scalar Multiplication Motivation

Let $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$. We would like to define the vector $2\vec{\mathbf{v}}$ so that it is in the same direction as $\vec{\mathbf{v}}$ but twice as long.

$$\vec{v}$$
 $2\vec{v}$

Drop perpendiculars to form two similar triangles where the hypotenuse of the larger triangle is twice that of the smaller triangle.

By similar triangles, the first coordinate of $2\vec{\mathbf{v}}$ must be twice the first coordinate of $\vec{\mathbf{v}}$.

By similar triangles, the second coordinate of $2\vec{\mathbf{v}}$ must be twice the second coordinate of $\vec{\mathbf{v}}$.

$$\frac{2\vec{v}}{\vec{v}} = \frac{2v_2}{v_2}$$

$$\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$$
 $2\vec{\mathbf{v}} = \langle 2v_1, 2v_2 \rangle$

Multiplication by a negative number reverses direction

$$-\vec{\mathbf{v}} = -\langle v_1, v_2 \rangle = \langle -v_1, -v_2 \rangle$$

A vector of length = 1 is a *unit vector* If $\vec{\mathbf{v}}$ is any vector, then

$$\frac{1}{|\vec{\mathbf{v}}|} \, \vec{\mathbf{v}}$$

is always a unit vector that points in the same direction as $\vec{\mathbf{v}}$.

Example:

$$\vec{\mathbf{v}} = \langle 3, 4 \rangle$$

 $|\vec{\mathbf{v}}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$

Therefore, the vector $\frac{1}{5}\vec{\mathbf{v}} = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$ is a unit vector

Check:

$$\left|\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle\right| = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2}$$
$$= \sqrt{\frac{9}{25} + \frac{16}{25}}$$
$$= \sqrt{1} = 1$$

Vector Addition

If $\vec{\mathbf{u}} = \langle u_1, u_2 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$, then the vector sum is defined to be:

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1 + v_1, \, u_2 + v_2 \rangle$$

If
$$\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$$
 and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$ then
 $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$

$$\vec{\mathbf{v}} = \langle x, y \rangle$$
$$= \langle x, 0 \rangle + \langle 0, y \rangle$$

$$\vec{\mathbf{v}} = \langle x, y \rangle$$

= $\langle x, 0 \rangle + \langle 0, y \rangle$
= $x \langle 1, 0 \rangle + y \langle 0, 1 \rangle$

$$\vec{\mathbf{v}} = \langle x, y \rangle$$

= $\langle x, 0 \rangle + \langle 0, y \rangle$
= $x \langle 1, 0 \rangle + y \langle 0, 1 \rangle$
= $x \vec{\mathbf{i}} + y \vec{\mathbf{j}}$

Vector Addition - Motivation

Vector addition is defined so that the vector sum is the diagonal of a parallelogram.

$$\vec{\mathbf{u}} = \langle u_1, \, u_2 \rangle \qquad \vec{\mathbf{v}} = \langle v_1, \, v_2 \rangle$$

$$\vec{\mathbf{u}} = \langle u_1, \, u_2 \rangle \qquad \vec{\mathbf{v}} = \langle v_1, \, v_2 \rangle$$

 $\vec{\mathbf{u}}+\vec{\mathbf{v}}$

 $\vec{\mathbf{u}}+\vec{\mathbf{v}}$

$$\vec{u} + \vec{w} = \vec{v}$$
$$\vec{u} + \vec{v}$$

If
$$\vec{\mathbf{u}} + \vec{\mathbf{w}} = \vec{\mathbf{v}}$$
 then $\vec{\mathbf{w}} = \vec{\mathbf{v}} - \vec{\mathbf{u}}$

Triangle has sides a, b and c

 $\vec{\mathbf{v}} = \langle b\cos\theta, \ b\sin\theta \rangle$ and $|\vec{\mathbf{v}}| = b$

 $\vec{\mathbf{v}} = \langle b\cos\theta, \ b\sin\theta \rangle \quad \vec{\mathbf{u}} = \langle a, \ 0 \rangle \quad |\vec{\mathbf{v}} - \vec{\mathbf{u}}| = c$

 $\vec{\mathbf{v}} = \langle b\cos\theta, \ b\sin\theta \rangle \quad \vec{\mathbf{u}} = \langle a, \ 0 \rangle \quad |\vec{\mathbf{v}} - \vec{\mathbf{u}}| = c$ $|\langle b\cos\theta - a, \ b\sin\theta - 0 \rangle| = c$ $\sqrt{(b\cos\theta - a)^2 + (b\sin\theta)^2} = c$ $b^2\cos^2\theta - 2ab\cos\theta + a^2 + b^2\sin^2\theta = c^2$

 $\vec{\mathbf{v}} = \langle b\cos\theta, \ b\sin\theta \rangle \quad \vec{\mathbf{u}} = \langle a, \ 0 \rangle \quad |\vec{\mathbf{v}} - \vec{\mathbf{u}}| = c$ $|\langle b\cos\theta - a, \ b\sin\theta - 0 \rangle| = c$ $\sqrt{(b\cos\theta - a)^2 + (b\sin\theta)^2} = c$ $b^2\cos^2\theta - 2ab\cos\theta + a^2 + b^2\sin^2\theta = c^2$ $a^2 + b^2\left(\cos^2\theta + \sin^2\theta\right) - 2ab\cos\theta = c^2$

$$|\vec{\mathbf{v}} - \vec{\mathbf{u}}| = c$$
$$|\langle b\cos\theta - a, \ b\sin\theta - 0 \rangle| = c$$
$$\sqrt{(b\cos\theta - a)^2 + (b\sin\theta)^2} = c$$
$$b^2\cos^2\theta - 2ab\cos\theta + a^2 + b^2\sin^2\theta = c^2$$
$$a^2 + b^2\left(\cos^2\theta + \sin^2\theta\right) - 2ab\cos\theta = c^2$$
$$a^2 + b^2 - 2ab\cos\theta = c^2$$

$$a^2 + b^2 - 2ab\cos\theta = c^2$$

