The Equation of a Line in Higher Dimension

y = mx + b

$$y = 2x + 1$$
$$-2x + 1y + 0z = 1$$

In the form:

$$ax + by + cz = d$$

y = 2x + 1

 $\vec{\mathbf{r}} = \langle t, 2t+1 \rangle$ $=\langle 0, 1 \rangle + \langle t, 2t \rangle$ $=\langle 0, 1 \rangle + t \langle 1, 2 \rangle$ $= \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$

Find the equation of the line through (1, -1, 3) and (-1, 3, 5)

Find the equation of the line through (1, -1, 3) and (-1, 3, 5)

 $\vec{\mathbf{v}} = \langle -1, 3, 5 \rangle - \langle 1, -1, 3 \rangle = \langle -2, 4, 2 \rangle$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$$
$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + t \langle -2, 4, 2 \rangle$$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$$

$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + t \langle -2, 4, 2 \rangle$$

$$= \langle 1 - 2t, -1 + 4t, 3 + 2t \rangle$$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$$

$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + t \langle -2, 4, 2 \rangle$$

$$= \langle 1 - 2t, -1 + 4t, 3 + 2t \rangle$$

x = 1 - 2t y = -1 + 4t z = 3 + 2t

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$$

$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + t \langle -2, 4, 2 \rangle$$

$$= \langle 1 - 2t, -1 + 4t, 3 + 2t \rangle$$

$$x = 1 - 2t \qquad y = -1 + 4t \qquad z = 3 + 2t$$

$$\frac{x - 1}{-2} = t \qquad \frac{y + 1}{4} = t \qquad \frac{z - 3}{2} = t$$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$$

$$\langle x, y, z \rangle = \langle 1, -1, 3 \rangle + t \langle -2, 4, 2 \rangle$$

$$= \langle 1 - 2t, -1 + 4t, 3 + 2t \rangle$$

$$x = 1 - 2t \qquad y = -1 + 4t \qquad z = 3 + 2t$$

$$\frac{x - 1}{-2} = t \qquad \frac{y + 1}{4} = t \qquad \frac{z - 3}{2} = t$$

$$\frac{x - 1}{-2} = \frac{y + 1}{4} = \frac{z - 3}{2}$$

We took $\vec{\mathbf{v}} = \langle -2, 4, 2 \rangle$

We could have taken $\vec{\mathbf{v}} = \frac{1}{2} \langle -2, 4, 2 \rangle = \langle -1, 2, 1 \rangle$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}} = \langle 1, -1, 3 \rangle + t \langle -1, 2, 1 \rangle$$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}} = \langle 1, -1, 3 \rangle + t \langle -1, 2, 1 \rangle$$

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$$

Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t \langle -1, 1, 2 \rangle$ Line 2 $\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$

Do the lines intersect? If so, where?

Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t_1 \langle -1, 1, 2 \rangle$ Line 2 $\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t_2 \langle -1, 0, 1 \rangle$

Do the lines intersect? If so, where?

- Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t_1 \langle -1, 1, 2 \rangle$
- Line 2 $\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t_2 \langle -1, 0, 1 \rangle$

Do the lines intersect? If so, where?

$$\langle 2, 0, 0 \rangle + t_1 \langle -1, 1, 2 \rangle = \langle 3, 1, 0 \rangle + t_2 \langle -1, 0, 1 \rangle$$

 $\langle 2 - t_1, t_1, 2t_1 \rangle = \langle 3 - t_2, 1, t_2 \rangle$

Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t_1 \langle -1, 1, 2 \rangle$

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t_2 \langle -1, 0, 1 \rangle$$

Do the lines intersect? If so, where?

$$\langle 2, 0, 0 \rangle + t_1 \langle -1, 1, 2 \rangle = \langle 3, 1, 0 \rangle + t_2 \langle -1, 0, 1 \rangle$$

 $\langle 2 - t_1, t_1, 2t_1 \rangle = \langle 3 - t_2, 1, t_2 \rangle$
 $2 - t_1 = 3 - t_2$ $t_1 = 1$ $2t_1 = t_2$

Conclusion: $t_1 = 1$ and $t_2 = 2$

Line 1 at $t_1 = 1$: $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t_1 \langle -1, 1, 2 \rangle = \langle 2, 0, 0 \rangle + 1 \langle -1, 1, 2 \rangle = \langle 1, 1, 2 \rangle$ Line 2 at $t_2 = 2$:

 $\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t_2 \langle -1, 0, 1 \rangle = \langle 3, 1, 0 \rangle + 2 \langle -1, 0, 1 \rangle = \langle 1, 1, 2 \rangle$

Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t \langle -1, 1, 2 \rangle$

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$$

Line 1	$ec{\mathbf{r}} =$	$\langle 2,$	0,	$0\rangle$	$+ t\langle -$	1, 1	1,	$2\rangle$
--------	--------------------	--------------	----	------------	----------------	------	----	------------

Line 2 $\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$

$$\vec{\mathbf{r}} = \langle 1, 1, 2 \rangle + t \vec{\mathbf{v}}$$

Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t \langle -1 \rangle$	1,	1,	$2\rangle$
--	----	----	------------

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$$

$$\vec{\mathbf{r}} = \langle 1, 1, 2 \rangle + t \vec{\mathbf{v}}$$

 $\vec{\mathbf{v}} = \langle -1, 0, 1 \rangle \times \langle -1, 1, 2 \rangle$

$$\begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ -1 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} = -\vec{\mathbf{i}} + \vec{\mathbf{j}} - \vec{\mathbf{k}}$$

Line 1	$\vec{\mathbf{r}} = \langle 2 \rangle$, 0, 0	$\rangle + t\langle -1,$	1, 2
--------	--	--------	--------------------------	------

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$$

$$\vec{\mathbf{r}} = \langle 1, 1, 2 \rangle + t\vec{\mathbf{v}}$$
$$\vec{\mathbf{v}} = \langle -1, 0, 1 \rangle \times \langle -1, 1, 2 \rangle = \langle -1, 1, -1 \rangle$$
$$\vec{\mathbf{r}} = \langle 1, 1, 2 \rangle + t \langle -1, 1, -1 \rangle$$

- Line 1 $\vec{\mathbf{r}} = \langle 2, 0, 0 \rangle + t \langle -1, 1, 2 \rangle$
- Line 2 $\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$

Find the equation of the plane containing both lines.

Line 1	$ec{\mathbf{r}} =$	$\langle 2,$	0,	$0\rangle$	+	$t\langle -$	-1,	1,	$2\rangle$

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$$

Find the equation of the plane containing both lines.

$$\vec{\mathbf{n}} \bullet (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0$$
$$\vec{\mathbf{n}} \bullet \langle x - 1, \ y - 1, \ z - 2 \rangle = 0$$

Line 1	$\vec{\mathbf{r}} =$	$\langle 2,$	0,	$0\rangle$	+t	$\langle -1,$	1,	$2\rangle$

Line 2
$$\vec{\mathbf{r}} = \langle 3, 1, 0 \rangle + t \langle -1, 0, 1 \rangle$$

Find the equation of the plane containing both lines.

$$\vec{\mathbf{n}} \bullet (\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) = 0$$
$$\vec{\mathbf{n}} \bullet \langle x - 1, \ y - 1, \ z - 2 \rangle = 0$$
$$\langle -1, \ 1, \ -1 \rangle \bullet \langle x - 1, \ y - 1, \ z - 2 \rangle = 0$$
$$x - y + z = 2$$

Motion of a particle through space at different times

Motion of a particle through space at different times

