
MA 345 Differential Equations - Homework Solutions C. Jacobs

Assignment 18

1. Graph each of the following functions. The symbol U refers to the unit step function.

a. f(t) = (cos t) · (U(t)− U(t− π))

b. g(t) = U(t)− U(t− 1) + (2− t) · (U(t− 1)− U(t− 2))

2. Express the following f(t) in terms of the unit step function U and then calculate L(f). You may use
a table of Laplace transforms.
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3. The electric charge y(t) in an LC series circuit is governed by the initial value problem:

y′′(t) + 4y(t) = 3 sin t− 3 sin t · U(t− 2π), y(0) = 1, y′(0) = 3

where U is the unit step function.
Determine the charge as a function of time t.
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y(t) = cos 2t+ sin 2t+ sin t− sin(t− 2π)U(t− 2π) +
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4. Problem 4 is deleted.



5. At t = 0, a tank contains 16 liters of a brine solution with 10 grams of salt dissolved in it. Then, we
start draining fluid out at 8 liters per minute. For 0 ≤ t ≤ 2, valve A is open and only pure water is being
pumped in at 8 liters per minute. Then, for t > 2, valve A is closed and valve B is opened and salt solution
containing 1

2 grams of salt per liter is pumped in at 8 liters per minute.

a. Let x(t) be the number of grams of salt in the tank after t minutes. Set up an appropriate differential
equation for x(t), making appropriate use of the unit step function U .
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b. Solve the differential equation using the method of Laplace transforms. Your final answer should be
expressed in terms of the unit step function.
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