MA 345 Differential Equations - Homework Solutions C. Jacobs

Assignment 19. Series Solutions
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Note: This is the same as y = e’
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The initial conditions imply that ¢y = 0 and a; = 2. The remaining coefficients are determined by the
recurrence relation a,y2 = 2a,41

as=2a1 =2%, a3=2ay=2> as=2a3=2* - a,=2" (forn > 1)



o0

n=1

Note that this is a geometric series that simplifies to:

4. The following differential equation has a solution of the form > a,z™. Calculate only the coefficients

az, as and ay.
(14+2%)y”" —2y =0 where y(0) =¢'(0) =1
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