Assignment 19. Series Solutions
(1)
$$y'' - y = 0$$
 where $y(0) = y'(0) = 1$
 $\sum n(n-1)a_n x^{n-2} - \sum a_n x^n = 0$
 $\sum ((n+2)(n+1)a_{n+2} - a_n) x^n = 0$
 $a_{n+2} = \frac{a_n}{(n+2)(n+1)}$ $a_0 = 1$ $a_1 = 1$

Repeated substitution yields:

$$a_n = \frac{1}{n!}$$
$$y = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Note: This is the same as $y = e^x$ (2) y'' - 2xy' - 2y = 0 where y(0) = 1, y'(0) = 0 $\sum n(n-1)a_n x^{n-2} - 2x \sum na_n x^{n-1} - 2 \sum a_n x^n = 0$ $\sum ((n+2)(n+1)a_{n+2} - 2(n+1)a_n) x^n = 0$ $a_{n+2} = \frac{2a_n}{n+2}$ $a_0 = 1$ $a_1 = 0$

Repeated substitution yields:

$$a_2 = 1$$
 $a_3 = 0$ $a_4 = \frac{1}{2}$ $a_5 = 0$ $a_6 = \frac{1}{3!}$ $a_7 = 0$ $a_8 = \frac{1}{4!}$... etc.
 $y = 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{3!} + \frac{x^8}{4!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!} x^{2n}$

Note: This is the same as $y = e^{x^2}$

3.

$$(1-2x)y''-4y'=0 \quad \text{where} \quad y(0)=0 \text{ and } y'(0)=2$$

$$(1-2x)\sum(n+2)(n+1)a_{n+2}x^n-4\sum(n+1)a_{n+1}x^n=0$$

$$\sum(n+2)(n+1)a_{n+2}x^n-\sum 2(n+2)(n+1)a_{n+2}x^{n+1}-4\sum(n+1)a_{n+1}x^n=0$$

$$\sum(n+2)(n+1)a_{n+2}x^n-\sum 2(n+1)(n)a_{n+1}x^n-4\sum(n+1)a_{n+1}x^n=0$$

$$\sum[(n+2)(n+1)a_{n+2}-2(n+1)(n)a_{n+1}-4(n+1)a_{n+1}]x^n=0$$

$$(n+2)(n+1)a_{n+2}-2(n+1)(n)a_{n+1}-4(n+1)a_{n+1}=0 \quad \text{for all } n$$

$$(n+2)a_{n+2}-(2n+4)a_{n+1} \quad \text{for } n \ge 0$$

$$a_{n+2}=2a_{n+1}$$

The initial conditions imply that $a_0 = 0$ and $a_1 = 2$. The remaining coefficients are determined by the recurrence relation $a_{n+2} = 2a_{n+1}$

$$a_2 = 2a_1 = 2^2$$
, $a_3 = 2a_2 = 2^3$ $a_4 = 2a_3 = 2^4$ \cdots $a_n = 2^n$ (for $n \ge 1$)

$$y = \sum_{n=1}^{\infty} 2^n x^n$$

Note that this is a geometric series that simplifies to:

$$y = \frac{2x}{1 - 2x}$$

4. The following differential equation has a solution of the form $\sum a_n x^n$. Calculate only the coefficients a_2 , a_3 and a_4 .

$$(1+x^2) y'' - 2y = 0$$
 where $y(0) = y'(0) = 1$

Substitute $y = \sum a_n x^n$ and $y'' = \sum n(n-1)a_n x^{n-2}$. Note that we are already given that $a_0 = a_1 = 1$

$$\sum n(n-1)a_n x^{n-2} + x^2 \sum n(n-1)a_n x^{n-2} - 2 \sum a_n x^n = 0$$

$$\sum (n+2)(n+1)a_{n+2}x^n + \sum n(n-1)a_n x^n - 2 \sum a_n x^n = 0$$

$$\sum ((n+2)(n+1)a_{n+2} + (n^2 - n - 2)a_n) x^n = 0$$

$$a_{n+2} = -\frac{(n^2 - n - 2)}{(n+2)(n+1)}a_n = -\frac{(n+1)(n-2)}{(n+2)(n+1)}a_n = -\frac{(n-2)}{n+2}a_n$$

$$a_2 = -\frac{(0-2)}{0+2}a_0 = a_0 = 1$$

$$a_3 = -\frac{(1-2)}{1+2}a_1 = \frac{1}{3}a_1 = \frac{1}{3}$$

$$a_4 = -\frac{(2-2)}{2+2}a_2 = 0$$