
Computation of Laplace Transforms
Jacobs

We have one last method that is used to solve linear differential equations
called the Method of Laplace Transforms. This is a method that is fre-
quently used in engineering courses and it is sufficiently difficult that we
will need a couple of weeks to study it. The method relies on improper
integrals, so let’s do a quick review example, starting with

∫∞
0
e−7t dt. As

you learned in Calculus II, this is defined in terms of limits:∫ ∞
0

e−7t dt = lim
T→∞

∫ T

0

e−7t dt = lim
T→∞

1

7

(
1− e−7T

)
=

1

7

Now, let’s change the integral and calculate
∫∞
0
e−7te−st dt, where s is a

constant.∫ ∞
0

e−7te−st dt = lim
T→∞

∫ T

0

e(−s−7)t dt = lim
T→∞

1

−s− 7

(
e−(s+7)T − 1

)
This integral will only converge if s + 7 > 0 and if that is the case then
e−(s+7)T −→ 0 when T −→ ∞. We can now complete the integral calcula-
tion:∫ ∞

0

e−7te−st dt = lim
T→∞

1

−s− 7

(
e−(s+7)T − 1

)
=

1

−s− 7
(0− 1) =

1

s+ 7

We have just done our very first Laplace transform problem. The Laplace
transform of f(t) is defined to be:

L (f(t)) =

∫ ∞
0

f(t)e−st dt

So, according to the calculation we have just done, the Laplace transform
of e7t is 1

s+7 .

L
(
e−7t

)
=

1

s+ 7

We have just “transformed” a function of t into a different function of
s (hence the terminology Laplace transform). In general, we write this as
L (f(t)) = F (s). If we started with F (s) and we wanted to find the function



f(t), then we are trying to find the inverse Laplace transform. So, according

to our last example, L−1
(

1
s+7

)
= e−7t.

If you look at the MA 345 course website, you will find a link to an excellent
video on how the definition of the Laplace transform can be motivated.

You will have to learn three skills:

a. How to compute a Laplace transform.
b. How to compute an inverse Laplace transform.
c. How to use Laplace transforms to solve differential equation.

It will be a little frustrating to you that you won’t get to see how to solve
differential equations with Laplace transforms until you are good at calcu-
lation both Laplace transforms and their inverses. Be patient - we’ll get
there. Right now, let’s focus on how to calculate a Laplace transform.

We have already seen the Laplace transform of e−7t. If we replace −7 with
the constant λ, we obtain the formula:

L
(
eλt
)

=
1

s− λ
Of course, we have to restrict s so that the integral converges. When we
looked at

∫∞
0
e−7te−st dt, we had to have s + 7 positive for the integral to

converge. In the case of
∫∞
0
eλte−st dt, we will need s− λ to be positive to

get a convergent integral. In most cases, s has to be restricted in some way
to guarantee convergence. From now on, we will simply assume that s is
suitably restricted whenever we need to do a Laplace transform.

A special case of L
(
eλt
)

= 1
s−λ is when λ = 0

L (1) = L
(
e0t
)

=
1

s− 0
=

1

s

The Laplace transform is a linear operation because integration is a linear
operation. If a and b are constants then:

L (af(t) + bg(t)) =

∫ ∞
0

(af(t) + bg(t))e−st dt

= a

∫ ∞
0

f(t)e−st dt+ b

∫ ∞
0

g(t)e−st dt

= aL (f(t)) + bL (g(t))



This will help use figure out Laplace transforms of different expressions
without resorting to integration each time. For example:

L
(
1 + e2t + 4e3t

)
= L (1) + L

(
e2t
)

+ 4L
(
e3t
)

=
1

s
+

1

s− 2
+

4

s− 3

We will need to be able to calculate Laplace transforms of expressions in-
volving tn. We already know how to do this when n = 0 because L

(
t0
)

=
L (1) = 1

s . As soon as n > 0, we will need integration by parts:

L
(
t1
)

=

∫ ∞
0

te−st dt = lim
T→∞

−T
sesT

+
1

s

∫ ∞
0

e−st dt = 0 +
1

s
L (1) =

1

s2

L
(
t2
)

=

∫ ∞
0

te−st dt = lim
T→∞

−T 2

sesT
+

2

s

∫ ∞
0

te−st dt = 0 +
2

s
L (t) =

2

s3

To conclude that T
sesT

and T 2

sesT
approach 0, we use L’Hôpital’s Rule. We

also need s > 0 to guarantee convergence. There is a broad category of
functions f(t) that have the property that:

lim
T→∞

f(T )

esT
= 0

These functions are said to be of exponential order and include polynomials,
sinωt, cosωt, eλt or any linear combination or product of such functions.
These are the only functions we will need to take Laplace transforms of

when we solve differential equations. If f(T )
esT

approaches 0, then we can
obtain a general formula for the Laplace transform of a derivative f ′(t).

L (f ′(t)) =

∫ ∞
0

f ′(t)e−st dt

= lim
T→∞

f(T )

esT
− f(0) + s

∫ ∞
0

f(t)e−st dt (integration by parts)

= 0− f(0) + s

∫ ∞
0

f(t)e−st dt

= s

∫ ∞
0

f(t)e−st dt− f(0)



In other words:
L (f ′(t)) = sL (f(t))− f(0)

This is an extremely useful formula for obtaining Laplace transforms. For
example, if f(t) = tn then f ′(t) = ntn−1 so:

L
(
ntn−1

)
= sL (tn)− 0n = sL (tn) (assuming n > 0)

Linearity implies that nL
(
tn−1

)
= sL (tn) so we get a reduction formula:

L (tn) =
n

s
L
(
tn−1

)
We can now get a general formula for L (tn)

L
(
t1
)

=
1

s
L
(
t0
)

=
1

s
L (1) =

1

s
· 1

s
=

1

s2

L
(
t2
)

=
2

s
L
(
t1
)

=
2

s
L (t) =

2

s
· 1

s2
=

2

s3

L
(
t3
)

=
3

s
L
(
t2
)

=
3

s
L
(
t2
)

=
3

s
· 2

s3
=

(3)(2)

s4

L
(
t4
)

=
4

s
L
(
t3
)

=
4

s
L
(
t3
)

=
4

s
· (3)(2)

s4
=

(4)(3)(2)

s5

The general formula is:

L (tn) =
n!

sn+1

We can now use linearity to get the Laplace transform of any polynomial.
For example:

L
(
2t2 − 3t+ 4

)
= 2L

(
t2
)
−3L (t)+4L (1) = 2· 2

s3
−3· 1

s2
+4·1

s
=

4

s3
− 3

s2
+

4

s

The formula L (f ′(t)) = sL (f(t)) − f(0) is an algebraic relationship be-
tween the Laplace transform of a function and the Laplace transform of its
derivative. This is actually the reason that Laplace transforms are useful in
solving differential equations. If we take the Laplace transform of both sides
of a differential equation, we will obtain an algebraic equation involving the



Laplace transform of the solution y(t). Algebraic equations are usually eas-
ier to solve than differential equations. More details on this later on when
we are finally ready to solve differential equations using Laplace transforms.

We have obtained formulas for the Laplace transforms of eλt and tn. It is
not hard to put these together and get a formula for L

(
tneλt

)
. We already

know that:

L (tn) =

∫ ∞
0

tne−st dt =
n!

sn+1

Now, compare this with:

L
(
tneλt

)
=

∫ ∞
0

tneλte−st dt =

∫ ∞
0

tne−(s−λ)t dt

The only difference between the two integrals is the the constant s in the
exponent of the first integral is replace by s − λ in the second integral.
Therefore,

L
(
tneλt

)
=

∫ ∞
0

tneλte−st dt =

∫ ∞
0

tne−(s−λ)t dt =
n!

(s− λ)n + 1

To get the Laplace transforms of sine and cosine, we begin with Euler’s
formulas:

eiωt = cosωt+ i sinωt

e−iωt = cosωt− i sinωt

If we add these equations, we get:

eiωt + e−iωt = 2 cosωt so cosωt =
1

2

(
eiωt + e−iωt

)
If we subtract the equations instead of adding them, we get:

eiωt − e−iωt = 2i sinωt so sinωt =
1

2i

(
eiωt − e−iωt

)
These are sometimes referred to as the backwards Euler formulas.



Now, if we use the linearity property of Laplace transforms, combined with
the formula L

(
eλt
)

= 1
s−λ , we get:

L (sinωt) =
1

2i

(
L
(
eiωt

)
− L

(
e−iωt

))
=

1

2i

(
1

s− iωt
− 1

s+ iωt

)
L (cosωt) =

1

2

(
L
(
eiωt

)
+ L

(
e−iωt

))
=

1

2

(
1

s− iωt
+

1

s+ iωt

)
Combine these fractions. Note that (s− iω)(s+ iω) = s2 − i2ω2 = s2 + ω2

L (sinωt) =
ω

s2 + ω2
L (cosωt) =

s

s2 + ω2

Just as we generalized from L (tn) to L
(
tneλt

)
, we can do the same thing

for sine and cosine.

L
(
eλt sinωt

)
=

ω

(s− λ)2 + ω2
L
(
eλt cosωt

)
=

s− λ
(s− λ)2 + ω2

We have now built up enough formulas to summarize in a table:

L (f(t)) =

∫ ∞
0

e−stf(t) dt

L (f ′) = sL (f)− f(0)

L (1) =
1

s

L
(
eλt
)

=
1

s− λ

L (tn) =
n!

sn+1

L
(
eλttn

)
=

n!

(s− λ)n+1

L (sinωt) =
ω

s2 + ω2

L (cosωt) =
s

s2 + ω2

L
(
eλt sinωt

)
=

ω

(s− λ)2 + ω2

L
(
eλt cosωt

)
=

s− λ
(s− λ)2 + ω2



It will be convenient to refer to this table whenever we need the Laplace
transform of a function rather than to go through the integration argument
all over again.

There is one final case to consider where, at least for now, we will need
to refer to the integral definition of Laplace transform. Suppose f(t) is a
discontinuous function defined by:

f(t) =

{
t for 0 ≤ t ≤ 1
0 for t > 1

The calculation of L (f(t)) requires splitting the integral up into 2 different
integrals:

L (f(t)) =

∫ 1

0

f(t)e−st dt+

∫ ∞
1

f(t)e−st dt

We now use the appropriate formula for f(t) for each of these integrals:

L (f(t)) =

∫ 1

0

te−st dt+

∫ ∞
1

0 · e−st dt

The second integral equals 0. The first integral can be done using integra-
tion by parts.

L (f(t)) =
1

s2
− 1

s
e−s − 1

s2
e−s

There is an elegant way to deal with Laplace transforms of discontinous
functions, but we’ll hold off on that until we get to unit step functions.


