Laplace Transform of the Unit Step Function
Jacobs

One of the advantages of using Laplace transforms to solve differential equa-
tions is the way it simplifies problems involving functions that undergo
sudden jumps. Consider the function U(t) defined as:

0 forz<O
u(t>_{1 for z >0

This function is called the unit step function. Some texts refer to this as
the Heaviside step function. Here’s the graph of U(t)

The graph of the function y = U(t — a) is similar except that it is 0 for
t < aandit’s 1 for t > a.




We can use the unit step function to select a portion of a graph to plot. For
example, the plot of y = sint is:
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Now, compare this graph to the graph of f(¢) =sint-U (t -z
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The function f(t) is 0 for t < 7 and it’s sint for ¢ > 5. Now, compare the

graph of f(t) with the graph of g(t) = sint - (U (t — %3 —U (t—3))



(0 for—oo<t<%

g(t) = (sint) - (L{ (t— g) ~Uu (t— 3;)) —{ sint  for

. 0 for%”<t<oo
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We are going to need to calculate Laplace transforms of expressions of the
form ¢(¢t)U(t — a) in order to use Laplace transforms to solve problems
P(D)y = g(t) involving abrupt changes in the function g(¢).

Before we can do that, take a look at the following integrals:

2 2 2
8 8 8
/t2dt:— /u2du:— /v2dv:—
0 3 0 3 0 3

The name of the variable of integration doesn’t affect the answer, so it is

sometimes referred to as a dummy variable. The same thing happens with

Laplace transforms. We know, for example, that £ (t") = SZ’% In terms

of integrals, [;*t"e *dt = . However, the following integrals have
exactly the same final value:
o0 n! > n!
u"e " du = v"e T dv =

Therefore, whether we write £ (f(t)) or L (f(u)) or L (f(v)) we still get the
same function of s as a result.



With that in mind, let’s calculate £ (g(¢t)U(t — a))

C(g(OUt — a)) = /0 T OUE — a)et dt

:/ g(t)-O-e_Stdt+/ gt)-1-e *dt
0 a
:/ g(t)e st dt

Now, make a change of variable u =t — a

Lottt —a) = [ T g(t)etdr
— /OO g(u + a)e_s(“+a) du
0

o
=e *° / g(u+a)e”*" du
0

— L (g(u+ a))
— e L (g(t +a))

The same change of variable u = ¢ + a gives us a similar formula for

L(g(t —a)i(t —a))

L(g(t—a)lU(t—a))= /OO g(t —a)e *t dt
= [ gtue e du
0

:e_as/ g(u)e " du
0

= e L (g(u))
=e " L(g(t))



We now have the following two formulas for taking Laplace transforms
involving the unit step function

L(gU(t —a)) =e L (g(t +a))

L(g(t —a)(t —a)) =e*L(g(1))

Example:

If an electric circuit contains a resistor of resistance R and a capacitor of
capacitance C then if y = y(t) is the amount of charge (in coulombs) on the
capacitor at time ¢t then Kirchoff’s Law implies that y satisfies the following

differential equation:
dy 1
R—=+—=y=£&(t
o T ay=¢EW)
where £(t) is a time-dependent electromotive force (voltage) applied to the
circuit at time t. Let’s take a simple example where R =1 ohm and C' =1

farad. For simplicity, take the initial condition y(0) = 0.
v +y=£&(t)  where y(0) =0

Suppose that the voltage is £(t) = 0 for the first 7 seconds and then a
switch is flipped and £(t) = 2+ 2cost for t > .

0 for0<t<m
g(t)_{Q—l—Qcost fort >

o 2 1 [3 [ [ 12
I

Notice that £(t) = (2+2cost)U(t — 7). Let’s solve the differential equation
and obtain a formula for y(t) (how charge on the capacitor varies with time).



Take the Laplace transform of both sides of the equation:
y +y=(2+2cost)U(t — ) where y(0) =0

L)+ L(>y)=L(2+2cost)U(t— 7))
We replace £ (y') with sC (y) —y(0) = sL(y) — 0 = sL(y).

sC(y)+ L(y) =L((24+2cost)U(t —))

Now, we use the formula £ (g(t)U(t —a)) = e **L(g(t + a))
with g(t) =24 2cost and a =7

sL(y)+ L(y) =e ™ L((24 2cos(t + 7))

(s+1)L(y) =e " L((2—2cost))

rnew = (3 3) = ()

L(y)=eT <S(S n 1)2(32 + 1))

We will have the answer to our differential equation if we can only find the
inverse Laplace transform. As usual, we can simplify the problem by using
a partial fraction decomposition.

co) = (2 - )

s s+1 241 s241

L(y)=e™L(2—e"—cost—sint)

We now use the formula £ (g(t — a)U(t —a)) = e~ *L (g(t)) with a = 7 and
g(t)=2—e ' —cost —sint

L(y) = L(g(t —m)U(t —))

Now, take the inverse Laplace transform:

y(t) = g(t — MUt — ) = (2 —em™ _cos(t — ) — sin(t — 7r)> Ut — )



We can simplify using the trigonometric identities cos(t — 7) = — cost and
sin(t — w) = —sint

y(t) =U(t —m) (2—e" " + cost +sint)

What this means is that y(t) = 2—e™ 4 cost+sint for t > m but y(¢) =0
fort <

32

Example:
Solve the following differential equation:

v +y=1+U(t—27)  where y(0) =0 and y'(0) =0

Such an equation would arise if we had a circuit with an inductor of L =1
henry, a resistance of R = 0 (in other words, no resistor) and a capacitor of
C' = 1 farad. The voltage source £(t) is 1 volt for 0 < ¢t < 27 and 2 volts
after that.

We start, as always by taking £ of both sides.

L") +Ly)=LQ1)+ LUt —2m))

L)~ 5y(0) ~ 9/ (0) + L (y) = - + LUt 2m)

Since y(0) = 0 and 3'(0) = 0 this simplifies to:

(> +1) L(y) = % + LU - 2m))



To get L (U(t —2m)), we use L (g(t)U(t —a)) =e *L(g(t + a)) with
g(t) =1 and a = 27.

(s*+1)L(y) = é + 6_2”%

Now, we solve for L (y) and try to find the inverse Laplace transform.

1 s _ors [ 1 s
— — _|_e -
s2+1 s  s241

s
= L (1 —cost) +e 2™ L (1 - cost)

L (y)

Now, we can use the formula £ (g(t — a)U(t — a)) = e ** L (g(t)) with
a =27 and g(t) =1 — cost

L(y) =L(1—cost)+ L((1—cos(t —2m))U(t — 2m))
y=1—cost+ (1 —cos(t —2m))U(t — 2m)
Since cos(t — 2m) = cost, we are left with:
y=1—cost+ (1 —cost)U(t —2m)

Here’s a plot of the solution. You can see the change in the solution starting
from ¢t = 27, when the voltage is increased.
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Example:
Solve the following differential equation:

v+ 4y + 4y =4t(1 - Ut — 1)) where y(0) = ¢'(0) =0

If we want to look at this as an electric circuit problem, then the voltage
E(t) = 4t(1 —U(t — 1)) rises steadily until £ = 1 and then cuts off.

We start by taking Laplace transform of both sides:
L") +4LY) +4L(y) = L (41 - U(t - 1))
Since y(0) = y’(0) = 0, the left hand side simplifies quickly

(s +4s+4)L (y) = L (4t) — L (4tU(t — 1))

4
(s+2°L(y) = 5 —e "LAE+1)
Notice that we just used the formula £ (g(t)U(t —a)) = e **L(g(t + a))
where a = 1 and ¢(t) = 4t

(5+2)°L(y) = — —e ™ (i+§>

s s2 s
Combining fractions and solving for £ (y)

£0) = g -

B 4s + 4
s2(s+2)?

s2(s+2)?



Here is where we use partial fractions decomposition if we want to get the
inverse Laplace transform.

P PR S SR (1 1
= —-— — — — € _—— —
V=927 (s+2)?2  s+2 2 (s+2)?

L) = £ (= bt 4 e7) = L (1 1)

We can make use of the formula £ (g(t — a)U(t —a)) = e~ **L (g(t)) with
a=1and g(t) =t —te 2.
Note that g(t —1) =t —1 — (t —1)e 201 =¢ — 1 — (t —1)e?~2

We can now take the inverse Laplace transform and get the solution.
y(t) =t —14+te ® +e 2 —(t— UL —1) (1 —e*2)

Example - The Valve Problem

Fluid is flowing into container at 1 liter/min
Fluid is flowing out at 1 liter/min.
For simplicity, assume the container has 1 liter of fluid at all times.

Initially, the tank contains nothing but pure water.
For t < 2, the fluid coming in has 1 gram of salt per liter.

For t > 2, the fluid coming in has only pure water.

Let y er of grams of salt in
the tank after t minutes. Let’s set up the differential equation that correctly
determines y

Rate Out = 1 lit.er Y gr.ams _ gra.ms
1 min 1 liter min

1 gram/min fort <2

0 fort>2_1_u(t_2)

Rate In = {



d
Y _ Rate in—Rateout =1-U(t—2) —y

dt
v +y=1-U(t-2)
1,1
L)+ Ly) = -~
. 1 —2s 1
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