
Laplace Transform of the Unit Step Function
Jacobs

One of the advantages of using Laplace transforms to solve differential equa-
tions is the way it simplifies problems involving functions that undergo
sudden jumps. Consider the function U(t) defined as:

U(t) =
{
0 for x < 0
1 for x ≥ 0

This function is called the unit step function. Some texts refer to this as
the Heaviside step function. Here’s the graph of U(t)

The graph of the function y = U(t − a) is similar except that it is 0 for
t < a and it’s 1 for t ≥ a.



We can use the unit step function to select a portion of a graph to plot. For
example, the plot of y = sin t is:

Now, compare this graph to the graph of f(t) = sin t · U
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The function f(t) is 0 for t < π
2 and it’s sin t for t ≥ π
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sin t for π
2 ≤ t ≤ 3π
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0 for 3π
2 < t < ∞

We are going to need to calculate Laplace transforms of expressions of the
form g(t)U(t − a) in order to use Laplace transforms to solve problems
P (D)y = g(t) involving abrupt changes in the function g(t).

Before we can do that, take a look at the following integrals:∫ 2

0

t2 dt =
8

3

∫ 2

0

u2 du =
8

3

∫ 2

0

v2 dv =
8

3

The name of the variable of integration doesn’t affect the answer, so it is
sometimes referred to as a dummy variable. The same thing happens with
Laplace transforms. We know, for example, that L (tn) = n!

sn+1 . In terms

of integrals,
∫∞
0

tne−st dt = n!
sn+1 . However, the following integrals have

exactly the same final value:∫ ∞

0

une−su du =
n!

sn+1

∫ ∞

0

vne−sv dv =
n!

sn+1

Therefore, whether we write L (f(t)) or L (f(u)) or L (f(v)) we still get the
same function of s as a result.

L (f(t)) = L (f(u)) = L (f(v))



With that in mind, let’s calculate L (g(t)U(t− a))

L (g(t)U(t− a)) =

∫ ∞

0

g(t)U(t− a)e−st dt

=

∫ a

0

g(t) · 0 · e−st dt+

∫ ∞

a

g(t) · 1 · e−st dt

=

∫ ∞

a

g(t)e−st dt

Now, make a change of variable u = t− a

L (g(t)U(t− a)) =

∫ ∞

a

g(t)e−st dt

=

∫ ∞

0

g(u+ a)e−s(u+a) du

= e−as

∫ ∞

0

g(u+ a)e−su du

= e−asL (g(u+ a))

= e−asL (g(t+ a))

The same change of variable u = t + a gives us a similar formula for
L (g(t− a)U(t− a))

L (g(t− a)U(t− a)) =

∫ ∞

a

g(t− a)e−st dt

=

∫ ∞

0

g(u)e−s(u+a) du

= e−as

∫ ∞

0

g(u)e−su du

= e−asL (g(u))

= e−asL (g(t))



We now have the following two formulas for taking Laplace transforms
involving the unit step function U

L (g(t)U(t− a)) = e−asL (g(t+ a))

L (g(t− a)U(t− a)) = e−asL (g(t))

Example:
If an electric circuit contains a resistor of resistance R and a capacitor of
capacitance C then if y = y(t) is the amount of charge (in coulombs) on the
capacitor at time t then Kirchoff’s Law implies that y satisfies the following
differential equation:

R
dy

dt
+

1

C
y = E(t)

where E(t) is a time-dependent electromotive force (voltage) applied to the
circuit at time t. Let’s take a simple example where R = 1 ohm and C = 1
farad. For simplicity, take the initial condition y(0) = 0.

y′ + y = E(t) where y(0) = 0

Suppose that the voltage is E(t) = 0 for the first π seconds and then a
switch is flipped and E(t) = 2 + 2 cos t for t ≥ π.

E(t) =
{

0 for 0 ≤ t < π
2 + 2 cos t for t ≥ π

Notice that E(t) = (2+2 cos t)U(t−π). Let’s solve the differential equation
and obtain a formula for y(t) (how charge on the capacitor varies with time).



Take the Laplace transform of both sides of the equation:

y′ + y = (2 + 2 cos t)U(t− π) where y(0) = 0

L (y′) + L (y) = L ((2 + 2 cos t)U(t− π))

We replace L (y′) with sL (y)− y(0) = sL (y)− 0 = sL (y).

sL (y) + L (y) = L ((2 + 2 cos t)U(t− π))

Now, we use the formula L (g(t)U(t− a)) = e−asL (g(t+ a))
with g(t) = 2 + 2 cos t and a = π

sL (y) + L (y) = e−πsL ((2 + 2 cos(t+ π))

(s+ 1)L (y) = e−πsL ((2− 2 cos t))

(s+ 1)L (y) = e−πs

(
2

s
− 2s

s2 + 1

)
= e−πs

(
2

s(s2 + 1)

)
L (y) = e−πs

(
2

s(s+ 1)(s2 + 1)

)
We will have the answer to our differential equation if we can only find the
inverse Laplace transform. As usual, we can simplify the problem by using
a partial fraction decomposition.

L (y) = e−πs

(
2

s
− 1

s+ 1
− s

s2 + 1
− 1

s2 + 1

)
L (y) = e−πsL

(
2− e−t − cos t− sin t

)
We now use the formula L (g(t− a)U(t− a)) = e−asL (g(t)) with a = π and
g(t) = 2− e−t − cos t− sin t

L (y) = L (g(t− π)U(t− π))

Now, take the inverse Laplace transform:

y(t) = g(t− π)U(t− π) =
(
2− e−(t−π) − cos(t− π)− sin(t− π)

)
U(t− π)



We can simplify using the trigonometric identities cos(t− π) = − cos t and
sin(t− π) = − sin t

y(t) = U(t− π)
(
2− eπ−t + cos t+ sin t

)
What this means is that y(t) = 2−eπ−t+cos t+sin t for t ≥ π but y(t) = 0
for t < π

Example:
Solve the following differential equation:

y′′ + y = 1 + U(t− 2π) where y(0) = 0 and y′(0) = 0

Such an equation would arise if we had a circuit with an inductor of L = 1
henry, a resistance of R = 0 (in other words, no resistor) and a capacitor of
C = 1 farad. The voltage source E(t) is 1 volt for 0 ≤ t < 2π and 2 volts
after that.

We start, as always by taking L of both sides.

L (y′′) + L (y) = L (1) + L (U(t− 2π))

s2L (y)− sy(0)− y′(0) + L (y) =
1

s
+ L (U(t− 2π))

Since y(0) = 0 and y′(0) = 0 this simplifies to:

(
s2 + 1

)
L (y) =

1

s
+ L (U(t− 2π))



To get L (U(t− 2π)), we use L (g(t)U(t− a)) = e−asL (g(t+ a)) with
g(t) = 1 and a = 2π.

(
s2 + 1

)
L (y) =

1

s
+ e−2πs 1

s

Now, we solve for L (y) and try to find the inverse Laplace transform.

L (y) =
1

s(s2 + 1)
+ e−2πs

(
1

s(s2 + 1)

)
=

1

s
− s

s2 + 1
+ e−2πs

(
1

s
− s

s2 + 1

)
= L (1− cos t) + e−2πsL (1− cos t)

Now, we can use the formula L (g(t− a)U(t− a)) = e−asL (g(t)) with
a = 2π and g(t) = 1− cos t

L (y) = L (1− cos t) + L ((1− cos(t− 2π))U(t− 2π))

y = 1− cos t+ (1− cos(t− 2π))U(t− 2π)

Since cos(t− 2π) = cos t, we are left with:

y = 1− cos t+ (1− cos t)U(t− 2π)

Here’s a plot of the solution. You can see the change in the solution starting
from t = 2π, when the voltage is increased.



Example:
Solve the following differential equation:

y′′ + 4y′ + 4y = 4t(1− U(t− 1)) where y(0) = y′(0) = 0

If we want to look at this as an electric circuit problem, then the voltage
E(t) = 4t(1− U(t− 1)) rises steadily until t = 1 and then cuts off.

We start by taking Laplace transform of both sides:

L (y′′) + 4L (y′) + 4L (y) = L (4t(1− U(t− 1))

Since y(0) = y′(0) = 0, the left hand side simplifies quickly

(s2 + 4s+ 4)L (y) = L (4t)− L (4tU(t− 1))

(s+ 2)2L (y) =
4

s2
− e−1sL (4(t+ 1))

Notice that we just used the formula L (g(t)U(t− a)) = e−asL (g(t+ a))
where a = 1 and g(t) = 4t

(s+ 2)2L (y) =
4

s2
− e−1s

(
4

s2
+

4

s

)
Combining fractions and solving for L (y)

L (y) =
4

s2(s+ 2)2
− e−1s

(
4s+ 4

s2(s+ 2)2

)



Here is where we use partial fractions decomposition if we want to get the
inverse Laplace transform.

L (y) =
1

s2
− 1

s
+

1

(s+ 2)2
+

1

s+ 2
− e−1s

(
1

s2
− 1

(s+ 2)2

)
L (y) = L

(
t− 1 + te−2t + e−2t

)
− e−1sL

(
t− te−2t

)
We can make use of the formula L (g(t− a)U(t− a)) = e−asL (g(t)) with
a = 1 and g(t) = t− te−2t.
Note that g(t− 1) = t− 1− (t− 1)e−2(t−1 = t− 1− (t− 1)e2−2t

We can now take the inverse Laplace transform and get the solution.

y(t) = t− 1 + te−2t + e−2t − (t− 1)U(t− 1) ·
(
1− e2−2t

)
Example - The Valve Problem

Fluid is flowing into container at 1 liter/min
Fluid is flowing out at 1 liter/min.
For simplicity, assume the container has 1 liter of fluid at all times.

Initially, the tank contains nothing but pure water.

For t < 2, the fluid coming in has 1 gram of salt per liter.

For t ≥ 2, the fluid coming in has only pure water.

Let y = y(t) be the number of grams of salt in
the tank after t minutes. Let’s set up the differential equation that correctly
determines y

Rate Out =
1 liter

1 min
· y grams

1 liter
= y

grams

min

Rate In =

{
1 gram/min for t ≤ 2

0 for t > 2
= 1− U(t− 2)



dy

dt
= Rate in− Rate out = 1− U(t− 2)− y

y′ + y = 1− U(t− 2)

L(y′) + L(y) = 1

s
− e−2s · 1

s

L(y) = 1

s(s+ 1)
− e−2s · 1

s(s+ 1)

=
1

s
− 1

s+ 1
− e−2s

(
1

s
− 1

s+ 1

)
= L

(
1− e−t

)
− e−2s · L

(
1− e−t

)
y(t) = 1− e−t − U(t− 2)

(
1− e2−t

)


