$$4\langle 2, 3\rangle = \langle 8, 12\rangle$$

$$0\langle x_1, x_2\rangle = \langle 0x_1, 0x_2\rangle = \langle 0, 0\rangle$$

$$0\vec{\mathbf{X}} = \vec{\mathbf{0}}$$

$$(-3) \begin{pmatrix} 5\\10\\2 \end{pmatrix} = \begin{pmatrix} -15\\-30\\-6 \end{pmatrix}$$

$$2\begin{pmatrix} 1 & 2 & 4 \\ 5 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} = ?$$

$$\begin{pmatrix}
2 & 4 & 8 \\
10 & 2 & 2 \\
0 & 2 & 4
\end{pmatrix}$$

$c\mathbf{A}$

Multiplication of a matrix by a number:

$$c \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{pmatrix}$$

$$= \begin{pmatrix} ca_{11} & ca_{12} & ca_{13} & \cdots & ca_{1m} \\ ca_{21} & ca_{22} & ca_{23} & \cdots & ca_{2m} \\ \vdots & \vdots & & \vdots & & \vdots \\ ca_{n1} & ca_{n2} & ca_{n3} & \cdots & ca_{nm} \end{pmatrix}$$

$$\langle 2, 3, 1 \rangle + \langle 1, 4, 0 \rangle = \langle 3, 7, 1 \rangle$$

$$\begin{pmatrix} 10 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 3 \\ -1 & 1 & -2 \end{pmatrix} = ?$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 2 & 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 3 & 4 \\ 0 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 \\ 1 & 3 & 6 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = ?$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A + O = A$$

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = ?$$

UNDEFINED

 $\mathbf{A} + \mathbf{B}$ is defined only when:

number of rows of \mathbf{A} = number of rows of \mathbf{B} number of columns of \mathbf{A} = number of columns of \mathbf{B}

Matrix Multiplication

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\mathbf{A}\mathbf{X} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

Let
$$\mathbf{B} = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

AB is defined by the following formula:

$$\begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

Multiply the following two matrices:

$$\begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 8 \\ 2 & 7 \end{pmatrix}$$

Multiply the following two matrices:

$$\begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
3 & 3 \\
12 & 2
\end{pmatrix}$$

Note that AB is not necessarily the same as BA

Matrix Multiplication

To obtain the entry in the i^{th} row, j^{th} column of \mathbf{AB} , take the dot product of the i^{th} row of \mathbf{A} with the j^{th} column of \mathbf{B} .

$$i^{th}column$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\sum_{k=1}^{n} a_{ik}b_{kj} \dots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{in} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1q} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & \dots & b_{nj} & \dots & b_{nq} \end{pmatrix}$$

$$\mathbf{AB} = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & -1 \\ -1 & 2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 4 & 0 \\ 0 & 2 \\ 1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 14 \\ -1 & -1 \\ 5 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

An n by n identity matrix is a matrix of the form:

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

An identity matrix I has the property that

$$IA = A$$
 and $AI = A$

for any n by n matrix A.

Definition

If \mathbf{A} and \mathbf{B} are matrices with the property that $\mathbf{A}\mathbf{B} = \mathbf{I}$ and $\mathbf{B}\mathbf{A} = \mathbf{I}$ then \mathbf{A} and \mathbf{B} are *inverses*.

Example:

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 3 & -1 & 0 \\ -3 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

AB is:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & -1 & 0 \\ -3 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$

Similarly, BA = I.

If **B** is the inverse of **A**, we will indicate this with the notation:

$$\mathbf{B} = \mathbf{A}^{-1}$$

$$\mathbf{A} = \mathbf{B}^{-1}$$

Computation of Matrix Inverses Matrix Reduction Method

Let
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

$$\text{Let } \mathbf{E}_{j} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \leftarrow (j^{th} \ row)$$

Then
$$\mathbf{AE}_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix} = j^{th} \text{ column of } \mathbf{A}$$

If \mathbf{X}_j represents the j^{th} column of the inverse matrix \mathbf{A}^{-1} , then

$$egin{aligned} \mathbf{A}^{-1}\mathbf{E}_j &= \mathbf{X}_j \ \mathbf{A}\,\mathbf{A}^{-1}\mathbf{E}_j &= \mathbf{A}\mathbf{X}_j \ \mathbf{E}_j &= \mathbf{A}\mathbf{X}_j \end{aligned}$$

Thus, the solution to the equation $\mathbf{AX} = \mathbf{E}_j$ is the j^{th} column of \mathbf{A}^{-1} .

$$egin{array}{c|c} egin{pmatrix} \mathbf{A} & \mathbf{E}_j \end{pmatrix} \ egin{pmatrix} \mathbf{I} & \mathbf{X}_j \end{pmatrix} \end{array}$$

For the 2 by 2 case, we compute the first column of the inverse of

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

by solving the equation $\mathbf{A}\mathbf{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

We do this by reducing the augmented matrix

$$\begin{pmatrix} a_{11} & a_{12} & | & 1 \\ a_{21} & a_{22} & | & 0 \end{pmatrix}$$

to the reduced matrix

$$\begin{pmatrix}
1 & 0 & b_{11} \\
0 & 1 & b_{21}
\end{pmatrix}$$

The last column will be the first column of \mathbf{A}^{-1}

Similarly, we compute the second column of \mathbf{A}^{-1} by solving $\mathbf{A}\mathbf{X} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. We do this by reducing the augmented matrix:

$$\begin{pmatrix} a_{11} & a_{12} & & 0 \\ a_{21} & a_{22} & & 1 \end{pmatrix}$$

to the reduced form:

$$\begin{pmatrix}
1 & 0 & b_{12} \\
0 & 1 & b_{22}
\end{pmatrix}$$

The last column will be the second column of \mathbf{A}^{-1} .

Combine

$$\begin{pmatrix} a_{11} & a_{12} & 1 \\ a_{21} & a_{22} & 0 \end{pmatrix}$$

together with

$$\begin{pmatrix}
a_{11} & a_{12} & | & 0 \\
a_{21} & a_{22} & | & 1
\end{pmatrix}$$

to form the augmented matrix

$$\begin{pmatrix}
a_{11} & a_{12} & | & 1 & 0 \\
a_{21} & a_{22} & | & 0 & 1
\end{pmatrix}$$

Now, reduce this until you obtain the reduced matrix:

$$\begin{pmatrix}
1 & 0 & | & b_{11} & b_{12} \\
0 & 1 & | & b_{21} & b_{22}
\end{pmatrix}$$

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$
 Find \mathbf{A}^{-1}

Solution: Form the augmented matrix

$$\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
-2 & 1 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{cc|cc}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right)$$

The matrix $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ will be the inverse of **A**.

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 3 & 10 \end{pmatrix}$$
 Find \mathbf{A}^{-1}

$$\begin{pmatrix} 1 & 3 & | & 1 & 0 \\ 3 & 10 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & | & 1 & 0 \\ 0 & 1 & | & -3 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & | & 10 & -3 \\ 0 & 1 & | & -3 & 1 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix}$$

$$x + 3y = 2$$

$$3x + 10y = 3$$

$$\begin{pmatrix} 1 & 3 \\ 3 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\mathbf{AX} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{X}$$

$$= \mathbf{A}^{-1} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 11 \\ -3 \end{pmatrix}$$

Thus, x = 11 and y = -3 are the solutions.