
Matrix Differential Equations
Jacobs

One of the very interesting lessons in this course is how certain algebraic
techniques can be used to solve differential equations. The purpose of

these notes is to describe how the solution
(

u1

u2

)
of the matrix equation(

a b
c d

)(
u1

u2

)
= λ

(
u1

u2

)
will apply to the solution of the differential equa-

tion a2
d2y
dt2 + a1

dy
dt + a0y = 0. As we will see later, the differential equation

can be rewritten in a matrix form and then the eigenvectors and eigenvalues
of the matrix then lead to a solution.

Review of Eigenvectors and Eigenvalues

Let A =
(

a b
c d

)
and u⃗ =

(
u1

u2

)
. A number λ is said to be an eigenvalue

of A if there is a nonzero vector u⃗ so that Au⃗ = λu⃗. The vector u⃗ is said
to be an eigenvector of A. Please note that the equation (A − λI)u⃗ = 0⃗,
where I =

(
1 0
0 1

)
and 0⃗ =

(
0
0

)
, is completely equivalent to the equation

Au⃗ = λu⃗. This is important because if we seek a nonzero solution u⃗ of
(A − λI)u⃗ = 0⃗ then the matrix A − λI had better not have an inverse.
After all, if A− λI had an inverse, then the equation (A− λI)u⃗ = 0⃗ could
be solved by multiplying both sides by this inverse and we would obtain
u⃗ = (A− λI)−10⃗ = 0⃗. This could not be if u⃗ is supposed to be a nonzero
solution of the equation.

If A − λI has no inverse then the determinant of A − λI must be 0, and
this is how we find the eigenvalues.

Example: Find the eigenvalues and eigenvectors of A =
(

1 2
−1 4

)
The determinant of A − λI is

∣∣∣ 1−λ 2
−1 4−λ

∣∣∣ = λ2 − 5λ + 6. This is zero only

when λ = 2 or λ = 3, so these are the eigenvalues.

To find the eigenvectors corresponding to λ = 2, we solve (A− 2I)u⃗ = 0⃗

(A− 2I)u⃗ =

(
−1 2
−1 2

)(
u1

u2

)
=

(
0
0

)



If we multiply out and compare coordinates, we get −u1 + 2u2 = 0 so
u1 = 2u2

u⃗ =

(
u1

u2

)
=

(
2u2

u2

)
= u2

(
2
1

)
Thus, any nonzero scalar multiple of

(
2
1

)
will be an eigenvector correspond-

ing to eigenvalue λ = 2.

Next, we find the eigenvectors corresponding to λ = 3 by solving the matrix
equation (A− 3I)u⃗ = 0⃗

(A− 3I)u⃗ =

(
−2 2
−1 1

)(
u1

u2

)
=

(
0
0

)
This implies that u⃗ is a solution only if −u1 + u2 = 0

u⃗ =

(
u1

u2

)
=

(
u2

u2

)
= u2

(
1
1

)
Therefore, any nonzero scalar multiple of

(
1
1

)
will be an eigenvector corre-

sponding to eigenvalue λ = 3.



Diagonal Matrices

A matrix
(

a b
c d

)
is said to be diagonal if b = c = 0. So, for example,

the identity matrix
(
1 0
0 1

)
is a diagonal matrix. Just about any matrix

calculation in easy to do with diagonal matrices. For example, look at the
following matrix multiplication, where the matrices are not diagonal:(

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
Compare this to the simplicity of multiplying two diagonal matrices:(

a11 0
0 a22

)(
b11 0
0 b22

)
=

(
a11b11 0

0 a22b22

)
Finding the inverse of a matrix is also simpler if the matrix is diagonal. If(

a b
c d

)
has an inverse, then it is given by:(

a b
c d

)−1

=

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)
Notice how much simpler this formula is if the matrix is diagonal:(

a 0
0 d

)−1

=

(
1
a 0
0 1

d

)
Diagonalization of Matrices

In many cases, we can take matrices that are not diagonal and put them in
terms of a diagonal matrix through a simple matrix multiplication formula.

As a simple demonstration, take the matrix A =
(

1 2
−1 4

)
whose eigenvec-

tors
(
2
1

)
and

(
1
1

)
have already been calculated. We begin by constructing a

matrix P =
(
2 1
1 1

)
from these eigenvectors. Now, look what happens when

we calculate the matrix product P−1AP.

P−1AP =

(
1 −1

−1 2

)(
1 2

−1 4

)(
2 1
1 1

)
=

(
2 −2

−3 6

)(
2 1
1 1

)
=

(
2 0
0 3

)
We have just obtained a diagonal matrix. This formula applies to a more

general matrix
(

a b
c d

)
.



Suppose the eigenvalues of A =
(

a b
c d

)
are λ1 and λ2 with eigenvectors

u⃗1 =
(

p11

p21

)
and u⃗2 =

(
p12

p22

)
respectively. This means that:

Au⃗1 = λ1u⃗1 Au⃗2 = λ2u⃗2(
a11 a12
a21 a22

)(
p11
p21

)
=

(
λ1p11
λ1p21

) (
a11 a12
a21 a22

)(
p12
p22

)
=

(
λ2p12
λ2p22

)
Now, let’s combine these results. Let P =

(
p11 p12

p21 p22

)
AP =

(
a11 a12
a21 a22

)(
p11 p12
p21 p22

)
=

(
λ1p11 λ2p12
λ1p21 λ2p22

)
Compare this to the product PΛ where Λ =

(
λ1 0
0 λ2

)
PΛ =

(
p11 p12
p21 p22

)(
λ1 0
0 λ2

)
=

(
λ1p11 λ2p12
λ1p21 λ2p22

)
We see that AP = PΛ. This means that P−1AP = Λ and therefore
P−1AP is a diagonal matrix. Of course, this assumes that the matrix P
has an inverse. It is easy to prove that as long as λ1 ̸= λ2, then the columns
of P are linearly independent and P will have an inverse.

Example: Let A=
(

0 1
−8 6

)
. Find a matrix P so that P−1AP is diagonal.

We begin by solving 0 = det(A− λI) = λ2 − 6λ+ 8 to get the eigenvalues.

λ1 = 2 λ2 = 4

The corresponding eigenvectors are:(
1
2

) (
1
4

)
and therefore, the required matrix P is(

1 1
2 4

)



Let’s check this answer:

P−1AP =

(
2 − 1

2
−1 1

2

)(
0 1

−8 6

)(
1 1
2 4

)
=

(
4 −1

−4 2

)(
1 1
2 4

)
=

(
2 0
0 4

)
The result is a diagonal matrix. Notice that the entries along the diagonal
are exactly the eigenvalues of A.

Application to Systems of Linear Differential Equations

Problems involving interconnecting spring systems, tank systems and elec-
tric circuits involve several unknown functions solving a system of differen-
tial equations.

Let’s consider, for example the problem of finding two functions x1 = x1(t)
and x2 = x2(t) that solve the following system of differential equations:

x′
1(t) = a11x1(t) + a12x2(t)

x′
2(t) = a21x1(t) + a22x2(t)

Let’s put this in matrix notation. Let x⃗ =
(

x1

x2

)
so dx⃗

dt =
(

x′
1

x′
2

)
and let

A =
(

a11 a12

a21 a22

)
. The system of differential equations can now be written

as dx⃗
dt = Ax⃗. The trick to solving this equation is to perform a change of

variable that transforms this differential equation into one involving only a
diagonal matrix.

Using the eigenvector procedure, we can find a matrix P so that P−1AP =(
λ1 0
0 λ2

)
. We can define a vector-valued function v⃗ =

(
v1(t)
v2(t)

)
by the formula

v⃗ = P−1x⃗. Make the substitution x⃗ = Pv⃗ into the differential equation
dx⃗
dt = Ax⃗.



dx⃗

dt
= Ax⃗

d

dt
(Pv⃗) = Ax⃗ = APv⃗

P
dv⃗

dt
= APv⃗

dv⃗

dt
= P−1APv⃗

Since P−1AP is a diagonal matrix, the matrix differential equation is now:( dv1
dt
dv2
dt

)
=

(
λ1 0
0 λ2

)(
v1
v2

)
=

(
λ1v1
λ2v2

)
If we now compare coordinates, we get two simple differential equations:

dv1
dt

= λ1v1
dv2
dt

= λ2v2

These equations can be solved easily using separation of variables.

v1(t) = c1e
λ1t v2(t) = c2e

λ2t

where c1 and c2 are constants. Now that we have the coordinates of v⃗, we
can obtain the coordinates of x⃗ from the equation x⃗ = Pv⃗.

Example:

Solve the following system of differential equations:

x′
1(t) = x1(t) + 2x2(t)

x′
2(t) = −x1(t) + 4x2(t)

In matrix form this equation is dx⃗
dt = Ax⃗ where A =

(
1 2

−1 4

)
. For this

matrix, we have already found P =
(
2 1
1 1

)
so if we make the substitution



x⃗ = Pv⃗ into the equation dx⃗
dt = Ax⃗, we will get dv⃗

dt =
(
2 0
0 3

)
v⃗ whose

solution is v⃗ =
(

c1e
2t

c2e3t

)
. The solution we seek is:

x⃗ = Pv⃗ =

(
2 1
1 1

)(
c1e

2t

c2e
3t

)
=

(
2c1e

2t + c2e
3t

c1e
2t + c2e

3t

)
Comparing coordinates, we get:

x1(t) = 2c1e
2t + c2e

3t and x2(t) = c1e
2t + c2e

3t

There is also a useful vector format for the answer if we split up the vector
solution as follows:

x⃗ =

(
2c1e

2t + c2e
3t

c1e
2t + c2e

3t

)
=

(
2c1e

2t

c1e
2t

)
+

(
c2e

3t

c2e
3t

)
= c1

(
2
1

)
e2t + c2

(
1
1

)
e3t

Notice that the general solution is a linear combination of terms of the form
u⃗ert where r is an eigenvalue and u⃗ is the corresponding eigenvector. This
observation can speed up the solution process.



Example:

An animal is receiving medication from an external drug recycling system
at an animal hospital. There are 3 liters of blood in this animal. Fluid is
being delivered into the animal intravenously. The fluid, containing both
blood and the drug, is entering the animal at the rate of 1

8 liters/hour. A
saline solution, containing no drug at all, is entering the animal at the rate
of 1

4 liters/hour. Blood is being drawn from the animal and sent back to the
external system at the rate of 3

8 liters/hour. Fluid is also being drawn out of
the external system and into a waste receptacle at the rate of 1

4 liters/hour.
The external system has 2 liters of fluid altogether and this volume stays
constant.

Let x(t) be the number of milligrams of drug in the animal after t hours.
Let y(t) be the number of milligrams of drug in the external system after t
hours.

Assume an initial condition of x(0) = 0 and y(0) = 210 milligrams of drug.
Find the formulas for x(t) and y(t) by solving the appropriate system of
differential equations.

dx

dt
=

(
Rate
In

)
−
(
Rate
Out

)
=

1

8

liter

hour
· y
2

mg

liter
− 3

8

liter

hour
· x
3

mg

liter

dy

dt
=

(
Rate
In

)
−
(
Rate
Out

)
=

3

8

liter

hour
· x
3

mg

liter
− 3

8

liter

hour
· y
2

mg

liter

More concisely:

x′ = −1

8
x+

1

16
y

y′ =
1

8
x− 3

16
y



Or, in matrix form: (
x′

y′

)
=

(
−1/8 1/16
1/8 −3/16

)(
x
y

)

If x⃗ =
(

x′

y′

)
and A =

(
−1/8 1/16
1/8 −3/16

)
. We can now solve dx⃗

dt = Ax⃗. We

begin with the eigenvalues by solving:

0 = det(A− λI) =

∣∣∣∣−1/8− λ 1/16
1/8 −3/16− λ

∣∣∣∣ = λ2 +
5

16
λ+

1

64

After factoring:

0 =

(
λ+

1

4

)(
λ+

1

16

)
So, the eigenvalues are:

λ = −1

4
λ = − 1

16

The corresponding eigenvectors are:

u⃗1 =

(
1

−2

)
u⃗2 =

(
1
1

)
If we proceed just as we did in the last example, we end up with the general
solution:

x⃗ = c1

(
1

−2

)
e−t/4 + c2

(
1
1

)
e−t/16

We have an initial condition x⃗(0) =
(

0
210

)
which implies that c1 = −70 and

c2 = 70 so (
x(t)
y(t)

)
= −70

(
1

−2

)
e−t/4 + 70

(
1
1

)
e−t/16

Equating coordinates:

x(t) = 70
(
−e−t/4 + e−t/16

)
y(t) = 70

(
2e−t/4 + e−t/16

)



Example: Solve the equation dx⃗
dt = Ax⃗ where A and x⃗ are defined as:

A =

 0 1 0
0 0 1

−2 1 2

 x⃗ =

x1(t)
x2(t)
x3(t)


We begin with the eigenvalues ofA which we get by solving det(A−λI) = 0.∣∣∣∣∣∣

−λ 1 0
0 −λ 1

−2 1 2− λ

∣∣∣∣∣∣ = 0

−λ3 + 2λ2 + λ− 2 = 0

Fortunately, this factors nicely

−(λ− 1)(λ+ 1)(λ− 2) = 0

Therefore the eigenvalues are:

λ = 1 λ = −1 λ = 2

and, if you calculate the corresponding eigenvectors, you will get:

u⃗ =

 1
1
1

 u⃗ =

 1
−1
1

 u⃗ =

 1
2
4


If the format from the previous example also applies to this three dimen-
sional case, we would expect the general solution to be a linear combination
of all solutions of the form u⃗ert which would give us:

x⃗ = c1

 1
1
1

 e1t + c2

 1
−1
1

 e−1t + c3

 1
2
4

 e2t

Will this really be true? Again, the diagonalization method comes to the
rescue. We form the matrix P with the eigenvectors making up the columns.

P =

 1 1 1
1 −1 2
1 1 4





Now, we can calculate P−1AP and verify that it is diagonal.

P−1AP =

 1 1/2 −1/2
1/3 −1/2 1/6

−1/3 0 1/3

 0 1 0
0 0 1

−2 1 2

 1 1 1
1 −1 2
1 1 4


=

 1 0 0
0 −1 0
0 0 2


If we now define v⃗ = P−1x⃗ as before, the equation dx⃗

dt = Ax⃗ transforms to

the equation dv⃗
dt = Λv⃗ where Λ is a diagonal matrix. v′1

v′2
v′3

 =

 1 0 0
0 −1 0
0 0 2

 v1
v2
v3

 =

 v1
−v2
2v3


Equate coordinates:

dv1
dt

= v1
dv2
dt

= −v2
dv3
dt

= 2v3

v1 = c1e
t v2 = c2e

−t v3 = c3e
2t



x⃗ = Pv⃗ =

 1 1 1
1 −1 2
1 1 4

 c1e
t

c2e
−t

c3e
2t


=

 c1e
t + c2e

−t + c3e
2t

c1e
t − c2e

−t + 2c3e
2t

c1e
t + c2e

−t + 4c3e
4t


= c1

 1
1
1

 e1t + c2

 1
−1
1

 e−1t + c3

 1
2
4

 e2t

This verifies the solution we had assumed at the outset.

The Repeated Root Case

Our solution of dx⃗
dt = Ax⃗ depended on being able to find a matrix an

invertible matrix P so that P−1AP is a diagonal matrix. This cannot
always be done.

Consider, for example, dx⃗
dt = Ax⃗ when x⃗ =

(
x1(t)
x2(t)

)
and A =

(
2 1
0 2

)
. The

first step is to find the eigenvalues by solving det(A− λI) = 0∣∣∣∣ 2− λ 1
0 2− λ

∣∣∣∣ = 0

(2− λ)(2− λ) = 0

This time, we only get one distinct eigenvalue, λ = 2. This is an example
of the repeated root case. The eigenvectors consist of all nonzero scalar

multiples of
(
1
0

)
, so P =

(
1 ?
0 ?

)
. We don’t have another eigenvector to put

in the second column of P. If we take some scalar multiple of
(
1
0

)
to be the

second column, then P=
(
1 c
0 0

)
will not have an inverse and we still can’t

calculate P−1AP.

Fortunately, we can still solve dx⃗
dt =

(
2 1
0 2

)
x⃗ a different way, so we can see

what the solution looks like.(
x′
1

x′
2

)
=

(
2 1
0 2

)(
x1

x2

)
=

(
2x1 + x2

2x2

)



Comparing coordinates:

dx1

dt
= 2x1 + x2

dx2

dt
= 2x2

The solution of dx2

dt = 2x2 is x2(t) = be2t, where b is a constant. If we

substitute this into dx1

dt = 2x1 + x2, we get the equation dx1

dt = 2x1 + be2t

which can be solved using an integrating factor.

The solution of dx1

dt = 2x1 + be2t is x1(t) = ae2t + bte2t where a is another
constant. Put these coordinates into the vector x⃗

x⃗ =

(
ae2t + bte2t

be2t

)
= a

(
1
0

)
e2t + b

(
t
1

)
e2t

The vector
(
1
0

)
e2t is of the form u⃗ert, where u⃗ is an eigenvector, but the

vector
(
t
1

)
e2t does not have this form.

Nonhomogeneous Equations

If P−1AP is diagonal then the equation dx⃗
dt = Ax⃗ is easily solved. The

equation dx⃗
dt = Ax⃗ is referred to as a homogeneous differential equation.

We can also solve equations of the form dx⃗
dt = Ax⃗ + f⃗ (a nonhomogeneous

differential equation). Let’s use A =
(

1 2
−1 4

)
because we have already

discovered that if P =
(
2 1
1 1

)
then P−1AP =

(
2 0
0 3

)
. Let f⃗ =

(
e2t

0

)
.

As usual, we make the substitution x⃗ = Pv⃗ into the equation dx⃗
dt = Ax⃗+ f⃗

d

dt
(Pv⃗) = APv⃗ + f⃗

P
dv⃗

dt
= APv⃗ + f⃗

dv⃗

dt
= P−1APv⃗ +P−1f⃗(

v′1
v′2

)
=

(
2 0
0 3

)(
v1
v2

)
+

(
1 −1

−1 2

)(
e2t

0

)
=

(
2v1 + e2t

3v2 − e2t

)



Comparing coordinates, we get:

dv1
dt

= 2v1 + e2t
dv2
dt

= 3v2 − e2t

Solve each of these using integrating factors.

v1 = c1e
2t + te2t v2 = c2e

3t + e2t

Now we can substitute into Pv⃗ and get the solution x⃗

x⃗ =

(
2 1
1 1

)(
c1e

2t + te2t

c2e
3t + e2t

)
If we multiply out and regroup we can write the solution in the form:

x⃗ = c1

(
2
1

)
e2t + c2

(
1
1

)
e3t +

(
2t+ 1
t+ 1

)
e2t

Solution of Second Order Linear Differential Equations

The matrix differential equations we have solved can be applied to equations

of the form a2
d2y
dt2 + a1

dy
dt + a0y = 0. Since we can always divide both sides

by a2, we might as well assume that a2 = 1, so the equation becomes
y′′ + a1y

′ + a0y = 0. This equation can always be converted to a matrix

form. Let x1 = y and x2 = y′. If x⃗ =
(

x1

x2

)
then the derivative of x⃗ is:

dx⃗
dt =

(
x′
1

x′
2

)
=

(
y′

y′′

)
=

(
y′

−a0y−a1y′

)
=

(
x2

−a0x1−a1x2

)
=

(
0 1

−a0 −a1

)(
x1

x2

)
We have just converted the scalar differential equation y′′ + a1y

′ + a0y = 0
to a matrix equation dx⃗

dt = Ax⃗. The first coordinate of x⃗ will be the solution
of y′′ + a1y

′ + a0y = 0.

Example:

Find the general solution y = y(t) of y′′ − 6y′ + 8y = 0

If we let x⃗ =
(

y
y′

)
then dx⃗

dt =
(

0 1
−8 6

)
x⃗. We have already discovered that

the eigenvalues of this matrix are λ = 2 and λ = 4 and the corresponding
eigenvectors are

(
1
2

)
and

(
1
4

)
. Therefore, the solution of dx⃗

dt = Ax⃗ is:

x⃗ = c1

(
1
2

)
e2t + c2

(
1
4

)
e4t =

(
c1e

2t + c2e
4t

2c1e
2t + 4c2e

4t

)



The solution y = y(t) is the first coordinate of this vector so:

y = c1e
2t + c2e

4t

Notice that each term is a constant times ert where r is an eigenvalue.

Example:

Find the general solution of y′′′ − 2y′′ − y′ + 2y = 0.

This is a third order differential equation, but we can extend our matrix
techniques so we can solve this too. Let x1 = y, x2 = y′ and x3 = y′′ be
the coordinates of a vector x⃗. Take the derivative of x⃗.

dx⃗

dt
=

x′
1

x′
2

x′
3

 =

 x2

x3

y′′′

 =

 x2

x3

−2y + y′ + 2y′′

 =

 x2

x3

−2x1 + x2 + 2x3


We can write this as a matrix multiplication.

dx⃗

dt
=

 0 1 0
0 0 1

−2 1 2

x1

x2

x3


We have solved dx⃗

dt = Ax⃗ for this particular matrix already. The general
solution is:

x⃗ = c1

 1
1
1

 e1t + c2

 1
−1
1

 e−1t + c3

 1
2
4

 e2t

Now, we can extract the first coordinate of this solution to get y(t)

y = c1e
t + c2e

−t + c3e
2t


