
Series Solutions of Differential Equations
Jacobs

Introduction.

The methods you have learned to solve the linear differential equation
P (D)y = 0 work very well as long as the operator P (D) have constant
coefficients. For example:

y′′ − 2y′ = 0

The standard technique we have used is to substitute erx (where r is a
constant) into the differential equation.

r2erx − 2rerx = 0

r2 − 2r = 0

Solutions: r = 0 and r = 2

Therefore, the general solution is:

y = ae0x + be2x = a+ be2x

Things do not work out as well if there are variables in the coefficients. For
example:

y′′ − 2xy′ = 0

Let’s see what happens if we try substituting erx? Once again, r is supposed
to be a constant.

r2erx − 2xrerx = 0

r2 − 2xr = 0

r(r − 2x) = 0

We do get r = 0 for one solution, but r = 2x would be a contradiction
because r is supposed to be a constant. The equation y′′ − 2xy′ = 0 is
a second order equation and theory tells us that there are supposed to be
two linearly independent solutions. Substituting erx didn’t give us both of
them. In general, if there are variables in the coefficients, we may not get
any solutions of the form erx. What do we do?



We can actually get a little further with the equation y′′ − 2xy′ = 0 if we
use a derivative formula from first year calculus. Take the formula for the
derivative of the log of a function:

d

dx
(ln f(x)) =

f ′(x)

f(x)

If we let f(x) = y′ then we get:

d

dx
(ln y′) =

y′′

y′

Now, back to the equation y′′ − 2xy′ = 0. This can be rewritten as:

y′′

y′
= 2x

d

dx
ln(y′) = 2x

ln(y′) = x2 + C

y′ = ex
2+C = eCex

2

= kex
2

where k = eC

We haven’t found the solution yet, but we do have its derivative

y′ = kex
2

All we have to do is integrate.

y = k

∫
ex

2

dx

This is not an easy integral. There is a way to express the answer as an
infinite series.

Review of Power Series

Back in Calculus II, you learned that under certain differentiability condi-
tions, a function f(x) could be expressed as a power series:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·



Or, in summation form:

f(x) =

∞∑
n=0

anx
n

Furthermore, you calculated power series for a variety of functions back in
MA 242:

ex =

∞∑
n=0

1

n!
xn = 1 + x+

1

2
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

sinx =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1 = x− 1

3!
x3 +

1

5!
x5 − · · ·

cosx =
∞∑

n=0

(−1)n

(2n)!
x2n = 1− 1

2
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

tan−1 x =
∞∑

n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+

x5

5
− x7

7
+ · · ·

In particular, look what we get if we take the x in the series for ex and
replace it with x2.

If ex =
∞∑

n=0

1

n!
xn then ex

2

=
∞∑

n=0

1

n!

(
x2

)n
So the solution to y′′ − 2xy′ = 0 is:

y = k

∫
ex

2

dx = k

∫ (
1 +

x2

1
+

x4

2
+ · · ·

)
dx

This isn’t bad, because even though the sum goes on for ever, we are still
integrating a big polynomial. The integral of a sum is the sum of the
individual integrals:

y = k

∫
ex

2

dx

= k

∫ (
1 +

x2

1
+

x4

2
+

x6

3!
+ · · ·

)
dx

= k

(
x+

x3

3
+

x5

(2)(5)
+

x7

(3!)(7)
+ · · ·

)



We have just expressed our solution in the form of a power series. To appre-
ciate what’s good about that, take the function g(x) = ex as an example.
Suppose you didn’t know that g(x) was equal to ex, but you did have it’s
power series:

1 + x+
1

2
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

Let’s graph ex and 1 + x+ 1
2x

2 on the same axis.

We can see from the graph that 1+x+ 1
2x

2 is a pretty good approximation
of ex, at least when x is close to 0. Now, compare the graph of ex to the
graph of 1 + x+ 1

2x
2 + 1

3!x
3

Now the approximation is even better.



Let’s add another term.
Compare the graphs of ex to 1 + x+ 1

2x
2 + 1

3!x
3 + 1

4!x
4

The more terms we add, the closer the power series gets to ex. If nothing
else, power series gives us a great approximation tool. If we are trying to
solve a differential equation but all we knew about the solution was it’s
power series

∑
anx

n, we could still obtain polynomial approximations for
the solution.

How do we find the power series
∑

anx
n for a function y = y(x) if we know

the differential equation that y satisfies?

Series Solution of a First Order Equation

The simplest way to find an expression of the form

y = a0 + a1x+ a2x
2 + a3x

3 + · · ·

that solves a differential equation is to plug the sum into the equation and
try to find the coefficients that make it work. Think of this as similar to
the method of undetermined coefficients, but there are an infinite number
of coefficients to find. For example, let’s obtain a series solution of the
differential equation:

dy

dx
− 7y = 0 where y(0) = 1

First of all, if y = a0 + a1x + a2x
2 + a3x

3 + · · · then y(0) = a0. Since the
initial condition says that y(0) = 1, this is what a0 is. We might as well
plug that in:

y = 1 + a1x+ a2x
2 + a3x

3 + · · ·



One coefficient down. Only an infinite number of them to go. The rest
of the coefficients can be obtained from the differential equation itself. To
substitute into the differential equation, we need dy

dx .

If y = 1 + a1x+ a2x
2 + a3x

3 + · · · then dy
dx is:

dy

dx
= a1 + 2a2x+ 3a3x

2 + 4a4x
3 + · · ·

Now, back to the differential equation:

dy

dx
− 7y = 0

(a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · ·)− 7(1 + a1x+ a2x
2 + a3x

3 + ·) = 0

Now, combine and collect like terms:

a1−7+(2a2−7a1)x+(3a3−7a2)x
2+(4a4−7a3)x

3+(5a5−7a4)x
4+ · · · = 0

The only way this polynomial is 0 for all x is for each coefficient to be 0.

a1 − 7 = 0 2a2 − 7a1 = 0 3a3 − 7a2 = 0 4a4 − 7a3 = 0 etc

The equation a1 − 7 = 0 implies that a1 = 7

The equation 2a2 − 7a1 = 0 implies that a2 = 7a1

2 = 72

2

The equation 3a3 − 7a2 = 0 implies that a3 = 7a2

3 = 73

(3)(2)

Similarly, a4 = 74

(4)(3)(2) = 74

4! . The general formula seems to be:

an =
7n

n!

Therefore, the solution to our differential equation is:

y =

∞∑
n=0

anx
n =

∞∑
n=0

7n

n!
xn

This happens to be the infinite series for e7x, but even if we didn’t recogize
that, the series could still be used to approximate the solution.



We can extend this method to higher order equations, but the calculation
becomes extremely tedious unless we use a trick involving the

∑
sign called

index shifting. Consider the sum for ex
2

that came up earlier:

1 +
x2

1
+

x4

2
+

x6

3!
+ · · ·

In
∑

notation, this would be expressed as:

∞∑
n=0

x2n

n!

However, any of the following would mean exactly the same thing:

∞∑
n=−1

x2(n+1)

(n+ 1)!

∞∑
n=−2

x2(n+2)

(n+ 2)!

∞∑
n=−3

x2(n+3)

(n+ 3)!

For more general power series:

a0 + a1x+ a2x
2 + a3x

3 + · · ·

Any of the following would mean the same thing:

∞∑
n=0

anx
n

∞∑
n=−1

an+1x
n+1

∞∑
n=−2

an+2x
n+2

There is an elegant trick that will enable us to not worry about the lower
limit of summation.

Define an = 0 when n < 0

Thus, a−1, a−2, a−3 all stand for 0. With this convention,

∞∑
n=−∞

anx
n = · · · + a−3x

−3 + a−2x
−2 + a−1x

−1 + a0 + a1x+ a2x
2 + · · ·

= · · ·+ 0x−3 + 0x−2 + 0x−1 + a0 + a1x+ a2x
2 + · · ·

= a0 + a1x+ a2x
2 + · · ·



Let’s use the abbreviation
∑

anx
n to mean that n ranges from −∞ to ∞.

In this notation, all of the following sums stand for the same thing:∑
anx

n
∑

an+1x
n+1

They all stand for y = a0+a1x+a2x
2+a3x

3+ · · ·. The same notation can
be used for the derivative:

y′ = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · ·

Any of the following sums would equal y′∑
nanx

n−1
∑

(n+ 1)an+1x
n

∑
(n+ 2)an+2x

n+1

We might as well state the result for the second derivative:

y′′ = 2a2 + (3)(2)a3x+ (4)(3)a4x
2 + (5)(4)a5x

3 + · · ·

Any of the following sums would equal y′′∑
n(n− 1)anx

n−2
∑

(n+1)nan+1x
n−1

∑
(n+2)(n+1)an+2x

n

Now, let’s return to the differential equation we solved earlier:

y′ − 7y = 0

If we substitute
∑

anx
n in place of y, we get:

y′ − 7
∑

anx
n = 0

We have several choices to use for y′, all meaning the same thing:

y′ =
∑

nanx
n−1 =

∑
(n+ 1)an+1x

n =
∑

(n+ 2)an+2x
n+1

If we use
∑

(n+ 1)an+1x
n for y′, we can collect terms very nicely.∑

(n+ 1)an+1x
n −

∑
7anx

n = 0



∑
((n+ 1)an+1 − 7an)x

n = 0

The only way this polynomial will equal 0 for all x is for each coefficient to
equal 0.

(n+ 1)an+1 − 7an = 0

This is referred to as the recurrence relation. This enables us to get an+1

as soon as we know an.
We already know that a0 = 1 from the initial condition y(0) = 1 and the
relation an+1 = 7an

n+1 will get us all of the other coefficients:

a1 =
7a0
1

= 7 a2 =
7a1
2

=
72

2
a3 =

7a2
3

=
73

(3)(2)

We are getting the same result an = 7n

n! as we had before.

y =

∞∑
n=0

anx
n =

∞∑
n=0

7n

n!
xn

We are ready to try this on a second order differential equation.

Example:
Find a series of the form

∑
anx

n that solves the following differential equa-
tion:

y′′ − y = 0 where y(0) = 1 and y′(0) = 1

As before, a0 is determined by the initial condition y(0) = 1 so a0 = 1. The
derivative of y is y′ = a1 + 2a2x+ 3a3x

2 + · · · so 1 = y′(0) = a1. Now that
we have both a0 = 1 and a1 = 1, we can find the remaining coefficients by
substituting y =

∑
anx

n into the equation y′′ − y = 0. For y′′ we have a
choice to make:∑

n(n− 1)anx
n−2

∑
(n+1)nan+1x

n−1
∑

(n+2)(n+1)an+2x
n

If we choose y′′ =
∑

(n+2)(n+1)an+2x
n into the equation, we will be able

to collect the sums together easily.∑
(n+ 2)(n+ 1)an+2x

n −
∑

anx
n = 0



∑
((n+ 2)(n+ 1)an+2 − an)x

n = 0

Each coefficient must equal 0, so this gives us our recurrence relation:

(n+ 2)(n+ 1)an+2 − an = 0 for all n

For n ≥ 0, we can solve for an+2 in terms of an.

an+2 =
an

(n+ 2)(n+ 1)

We already know a0 = 1 and a1 = 1.
If n = 0, the formula an+2 = an

(n+2)(n+1 implies a2 = 1
(2)(1)

If n = 1, we get a3 = a1

(3)(2) =
1

(3)(2)

If n = 2, we get a4 = a2

(4)(3) =
1

(4)(3)(2)(1)

If n = 3, we get a5 = a3

(5)(4) =
1

(5)(4)(3)(2)(1)

We have a predictable pattern. The general expression for an is:

an =
1

n!

Therefore the solution to the differential equation is:

y =
∞∑

n=0

anx
n =

∞∑
n=0

1

n!
xn

Of course, this is the series for ex.

The equation y′′−y = 0 could have been solved more easily by substituting
erx. However, as we have seen earlier, we can’t do this if there are any
variables in the coefficients. Let’s try an example like that.

Example:
Solve the differential equation:

y′′ + xy′ + 2y = 0 where y(0) = 0 and y′(0) = 1

As before, y(0) and y′(0) give us the first two coefficients. In this case,
a0 = 0 and a1 = 1.



We now substitute
∑

anx
n in place of y and

∑
(n + 2)(n + 1)an+2x

n in
place of y′′ in the equation y′′+xy′+2y = 0. For the middle term, we have
a choice to make:

y′ =
∑

nanx
n−1 =

∑
(n+ 1)an+1x

n =
∑

(n+ 2)an+2x
n+1

The best choice would be y′ =
∑

nanx
n−1 because this way, the middle

term becomes xy′ = x
∑

nanx
n−1 =

∑
nanx

n and the sums can then be
collected together.

y′′ + xy′ + 2y = 0∑
(n+ 2)(n+ 1)an+2x

n +
∑

nanx
n + 2

∑
anx

n = 0∑
((n+ 2)(n+ 1)an+2 + nan + 2an)x

n = 0

This can only happen if the coefficient of xn is 0 for each n.

(n+ 2)(n+ 1)an+2 + (n+ 2)an = 0

For n ≥ 0 we get:

an+2 =
−an
n+ 1

For n = 0, we get a2 = −a0

0+1 = 0 For n = 1 we get a3 = −a1

2 = − 1
2

For n = 2, we get a4 = −a2

2+1 = 0 For n = 3 we get a5 = −a3

4 = 1
(4)(2)

All the coefficients with even subscripts are all coming out to be 0, so we
can just focus on the coefficients with the odd subscripts:

a7 =
−a5
6

= − 1

(6)(4)(2)
a9 =

−a7
8

=
1

(8)(6)(4)(2)

Each factor in the denominator is a multiple of 2. If we factor all the twos
out we get:

a7 = − 1

233!
a9 =

1

244!

The earlier coefficients have the same pattern.
a5 = 1

(4)(2) =
1

222! , a3 = − 1
2 = − 1

211! and a1 = 1 = 1
200!



Let’s see what our solution looks like:

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + · · ·

= a1x+ a3x
3 + a5x

5 + a7x
7 + a9x

9 + · · ·

=
1

200!
x− 1

211!
x3 +

1

222!
x5 − 1

233!
x7 +

1

244!
x9 + · · ·

If we factor an x out, it becomes very easy to write the final answer in
summation notation:

y = x

(
1

200!
− 1

211!
x2 +

1

222!
x4 − 1

233!
x6 +

1

244!
x8 + · · ·

)

y = x

∞∑
n=0

(−1)n

2nn!
x2n

Example:

Find a solution of the form
∑

anx
n that solves:(

1 + 4x2
)
y′′ + 16xy′ + 8y = 0 where y(0) = 1 and y′(0) = 0

The initial conditions tell us that a0 = 1 and a1 = 0. Now, it’s time to
substitute

∑
anx

n into the differential equation so that we can find the
remaining coefficients. We need to decide which format of the sum to use
for y′ and y′′. The strategy is to choose the format that gives us expressions
of the form

∑
( )xn where the coefficient multiplying xn depends only on

n and not on x. For this problem, it helps to multiply out the first term of
the differential equation:

y′′ + 4x2y′′ + 16xy′ + 8y = 0

For the very first term, replace y′′ with
∑

(n+ 2)(n+ 1)an+2x
n

For the second term, we’re better off replacing y′′ with
∑

n(n− 1)anx
n−2

because this way, 4x2y′′ =
∑

4n(n− 1)anx
n.

For the third term, the best choice is y′ =
∑

nanx
n−1 because this way,

16xy′ =
∑

16nanx
n



∑
(n+2)(n+1)an+2x

n+
∑

4n(n−1)anx
n+

∑
16nanx

n+
∑

8anx
n = 0∑

((n+ 2)(n+ 1)an+2 + (4n(n− 1) + 16n+ 8)an)x
n = 0

Each coefficient must be 0 so:

(n+ 2)(n+ 1)an+2 + (4n(n− 1) + 16n+ 8)an = 0 for all n

The equation simplifies:

(n+ 2)(n+ 1)an+2 + (4n2 + 12n+ 8)an = 0

(n+ 2)(n+ 1)an+2 + 4(n+ 2)(n+ 1)an = 0

an+2 = −4an

Since we already know a0 = 1 and a1 = 0, we begin by substituting n = 0
into our recurrence relation an+2 = −4an
For n = 0, a2 = −4a0 = −4 For n = 1, a3 = −4a1 = 0
For n = 2, a4 = −4a2 = 42 For n = 3, a5 = −4a3 = 0
For n = 4, a6 = −4a4 = −43 For n = 5, a7 = −4a5 = 0

an = 0 whenever n is an odd integer, so our final answer will have the form:

y = a0 + a2x
2 + a4x

4 + a6x
6 + · · ·

= 1− 4x2 + 42x4 − 43x6 + · · ·

It’s always nice if you can write the answer in summation form:

y =
∞∑

n=0

(−4)nx2n

We have our final answer, but we can actually go one step further in this
problem and write the answer in a closed form (not a

∑
expression). To

see this, you have to remember the geometric series:

1 + r + r2 + r3 + r4 + · · · = 1

1− r
as long as |r| < 1



In summation form:
∞∑

n=0

rn =
1

1− r

The solution of our differential equation y =
∑

(−4)nx2n =
∑(

−4x2
)n

is exactly of this form with r = −4x2. Therefore, the solution of the
differential equation is y = 1

1−r with r = −4x2

y =
1

1 + 4x2

The restriction |r| < 1 mentioned above is to guarantee convergence. If
r = −4x2 then 4x2 < 1 and −1

2 < x < 1
2 is the interval in which our series

solution converges. The issue of convergence is one that I have ignored in
this lesson. When we substitute

∑
anx

n into a differential equation, the
final answer might only converge for a restricted interval. The Ratio Test
from MA 242 would be useful in finding this interval.


