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L vibration.* For y = w we define the solution to be
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As suspected, when (- o0, the displacements become large; in fact,

|x(t,}l = oo, when t, = nn/w, n=1,2,.... The phenomenon we have just
Figure 5.18 described is known as pure resonance. The graph given in Figure 5.18 shows l_—
typical motion in this case. -

In conclusion it should be noted that there is no actual need to use a
limiting process on (8) to obtain the solution for y = . Alternatively, equation
(9) follows by solving the initzal-value problem

d? .
dTJ; + w?x = F, sin wt
J -
(=0 2| =0
dt |i=o
directly by conventional methods. 3

Remark: If a mechanical system were actually described by a function
such as () of this section, it would necessarily fail. Large oscillations of a
weight on a spring would eventually force the spring beyond its elastic limit.
One might argue too that the resonating model presented in Figure 5.18 is
completely unrealistic since it ignores the retarding effects of ever-present
damping forces. Although it is true that pure resonance cannot occur when the
smallest amount of damping is taken into consideration, large and equally
destructive amplitudes of vibration (although bounded as ¢ — o) can occur.

* Forgetting about damping effects of shock absorbers, the situation is roughly equivalent
to a numbgr of passengers jumping up and down in the back of a bus in time with the
natural vertical motion caused by equally spaced faults (such as cracks) in the road.
Theoretically these passengers could upset the bus—assuming they are not kicked off first
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If you have ever looked out a window while in flight, you have probably
observed that wings on an airplane are not perfectly rigid. A reasonable
amount of flex or flutter is not only tolerated but necessary to prevent the wing
from snapping like a piece of peppermint stick candy. In late 1959 and early
1960 two commercial plane crashes involving a relatively new model of
propjet occurred, illustrating the destructive effects of large mechanical
oscillations.

The unusual aspect of these crashes was that they both happened while
the planes were in mid-flight. Barring midair collisions, the safest period
during any flight is when the plane has attained its cruising altitude. It is well
known that a plane is most vulnerable to an accident when it is least
maneuverable, namely, during either take-off or landing. So, having two
planes simply fall out of the sky was not only a tragedy but an embarrassment
to the aircraft industry and a thoroughly puzzling problem to aerodynamic
cngineers. In crashes of this sort, a structural failure of some kind is im-
mediately suspected. After a massive technical investigation, the problem
was eventually traced in each case to an outboard engine and engine housing,
Roughly. it was determined that when each plane surpassed a critical speed of
approximately 400 mph, a propelier and engine began to wobble, causing a
gyroscopic force, which could not be quelled or damped by the engine housing.
This external vibrational force was then transferred to the already oscillating
wing, This, in itself, need not have been destructively dangerous since aircraft
wings are designed to withstand the stress of unusual and excessive forces. {In
fact the particular wing in question was so incredibly strong that test engineers
and pilots who were deliberately trying to snap a wing under every conceivable
flight condition failed to do s0.) But, unfortunately, after a short period of time
during which the engine wobbled rapidly, the frequency of the impressed force
actually slowed to a point at which it approached and finally coincided with
the maximum frequency of wing flutter (around 3 cycles per second). The
resulting resonance situation finally accomplished what the test engineers
could not do; namely, the amplitudes of wing flutter became large enough to
snap the wing (see Figure 5.19).

The problem was solved in two steps. All models of this particular plane
were required to fly at speeds substantially below 400 mph until each plane
could be modified by considerably strengthening {or stiffening) the engine
housings. A strengthened engine housing was shown to be able to impart a
damping effect capable of preventing the critical resonance phenomenon even
in the unlikely event of a subsequent engine wobble.*

You may be aware that soldiers usually do not march in step across
bridges. The reason for breaking stride is simply to avoid any possibility of
resonance occurring between the natural vibrations inherent in the bridge’s

* For a fascinating nontechnical account of the investigation see Robert I. Serling, Loud
ard Clear, New York: Dell, 1970, Chapter 5.
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structure and the frequency of the external force of a multitude of feet
stomping in unison on the bridge.

Bridges are good examples of vibrating mechanical systems, which are
constantly being subjected to external forces, from people walking on them,
cars and trucks driving on them, water pushing against their foundations,
and wind blowing against their superstructures. On November 7, 1940, the
Tacoma Narrows Bridge at Puget Sound in the state of Washington col-
lapsed. However, the crash came as no surprise since “Galloping Gertie,” as
the bridge was called by local residents, was famous for a vertical undulating
motion of its roadway, which gave many motorists a very exciting crossing,
On November 7, only four months after its grand opening, the amplitudes of
these undulations became so large that the bridge failed and a substantial .
portion was sent splashing into the water below. In the investigation that
followed, it was found that a poorly designed superstructure caused the wind
blowing ucross it to vortex in a periodic manner. When the frequency of this
periodic force approached the natural frequency of the bridge, large upheavals
of the road resulted. In a word, the bridge was another victim of the de-
structive effect of mechanical resonance. Since this disaster developed over a
matter of months, there was sufficient opportunity to record on film the
strange and frightening phenomenon of a bucking and heaving bridge and its
ultimate collapse (see Figure 5.20).*

Acoustic vibrations can be equally as destructive as large mechanical
vibrations. In recent television commercials, jazz singers have inflicted de-
struction on the lowly wine glass (see Figure 5.21). Sounds from organs and
piccolos have been known to crack windows.

“As the horns blew, the people began to shout. When they heard the signal horn,
they raised a tremendous shout. The wall collapsed. . . " Joshua 6:20

* National Committee for Fluid Mechanics Films, Educational Services, Inc., Watertown,
Mass. See also, American Society of Civil Engineers: Proceedings, “Failure of the Tacoma
Narrows Bridge,” Vol. 69, pp. 1555-85, Dec. 1943.




