Embry-Riddle Aeronautical University	C. Jacobs
MA 345 Differential Equations	Spring 2020
Name :	Exam II

Questions 1 - 6 (24 points). Match each differential equation to its solution by putting the appropriate letter next to the equation number.

1. $(D^2 - 16D) y = 0$ 2. $(D^2 - 16) y = 0$ 3. $(D^2 + 16) y = 0$ 4. $(D^2 + 16D) y = 0$ 5. $(D^2 - 2D + 17) y = 0$ 6. $(D^2 - 16D + 64) y = 0$ a) $y = c_1 e^{4x} + c_2 e^{-4x}$ b) $y = c_1 + c_2 e^{-16x}$ c) $y = c_1 + c_2 e^{-16x}$ d) $y = c_1 e^{8x} + c_2 x e^{8x}$ e) $y = c_1 \cos(4x) + c_2 \sin(4x)$ f) $y = e^x (c_1 \cos(4x) + c_2 \sin(4x))$

Questions 7 - 11 (25 points). Answer each of the following multiple choice questions by circling the correct choice.

7. (5 points) Suppose $z = e^{-\frac{3\pi}{2}i}$. Then z equals: **a**) -1**c**) *i* **b**) -i**d**) 1 e) none of these 8. (5 points) Which of the following is the annihilator of $x^2 + e^{2x}$? **a**) $D^4 - 3D^2$ **b**) $D^4 - 2D^3$ **c**) $(D-2)^3$ **d**) $(D-3)^2$ **e**) none of these **9.** (5 points) Which of the following will equal $(D-1)^3 (x^2 e^x)$? **d**) $3x^2e^x$ c) $6xe^x$ **a**) 0 **b**) $6e^x$ e) none of these 10. (5 points) Find the general form of the particular solution y_p of the equation $(D-1)^2 y = e^x$ d) ax^2e^x c) axe^x **a**) *a* **b**) ae^x e) none of these 11. (5 points) Suppose the matrix equation $\mathbf{A}\vec{\mathbf{X}} = \vec{\mathbf{b}}$ has at least one

solution. If the determinant of ${\bf A}$ is 0, then which method should be used to solve for $\vec{{\bf X}}$?

- a) Cramer's Rule Method
- **b**) Matrix Reduction Method
- c) Matrix Inverse Method
- d) Any of the above could be used successfully
- e) None of the above.

12. (30 points) Let \mathbf{A} , $\vec{\mathbf{X}}$ and $\vec{\mathbf{b}}$ be defined as follows:

$$\mathbf{A} = \begin{pmatrix} -1 & 0\\ 2 & -1 \end{pmatrix} \qquad \vec{\mathbf{X}} = \begin{pmatrix} x\\ y \end{pmatrix} \qquad \vec{\mathbf{b}} = \begin{pmatrix} 2\\ 1 \end{pmatrix}$$

a) Find \mathbf{A}^{-1} (the inverse of \mathbf{A}) or show that no inverse exists.

b) Solve $\mathbf{A}\vec{\mathbf{X}} = \vec{\mathbf{b}}$

c) Find a non-zero vector $\vec{\mathbf{X}}$ that solves the equation $\mathbf{A}\vec{\mathbf{X}} = -\vec{\mathbf{X}}$ or show that no such vector $\vec{\mathbf{X}}$ exists.

13. (21 points) Use the method of undetermined coefficients to solve the following differential equation. Show all work.

$$(D^2 + 1) y = e^x + e^{-x}$$
 where $y(0) = 0$ and $y'(0) = 0$