Embry-Riddle Aeronautical University MA 345 Differential Equations

Exam II

Questions 1 - 6 (24 points). Match each differential equation to its solution by putting the appropriate letter next to the equation number.

1. $(D^2 - 16D) y = 0$ a) $y = c_1 e^{4x} + c_2 e^{-4x}$ **2.** $(D^2 - 16) y = 0$ **b**) $y = c_1 + c_2 e^{16x}$ c) $y = c_1 + c_2 e^{-16x}$ **3.** $(D^2 + 16) y = 0$ **d**) $y = c_1 e^{8x} + c_2 x e^{8x}$ 4. $(D^2 + 16D) y = 0$ 5. $(D^2 - 2D + 17) y = 0$ e) $y = c_1 \cos(4x) + c_2 \sin(4x)$ 6. $(D^2 - 16D + 64) y = 0$ f) $y = e^x (c_1 \cos(4x) + c_2 \sin(4x))$ **4 - c** 5 - f 1 - b 2 - a 3 - e 6 - d Answers:

Questions 7 - 11 (25 points). Answer each of the following multiple choice questions by circling the correct choice.

7. (5 points) Suppose $z = e^{-\frac{3\pi}{2}i}$. Then z equals: **b**) -i \mathbf{c}) | i**d**) 1 **a**) -1e) none of these 8. (5 points) Which of the following is the annihilator of $x^2 + e^{2x}$? **b**) $D^4 - 2D^3$ **c**) $(D-2)^3$ **d**) $(D-3)^2$ **a**) $D^4 - 3D^2$ e) none of these **9.** (5 points) Which of the following will equal $(D-1)^3 (x^2 e^x)$? \mathbf{a}) 0 **b**) $6e^x$ c) $6xe^x$ **d**) $3x^2e^x$ e) none of these 10. (5 points) Find the general form of the particular solution y_p of the equation (D - D) $1)^2 y = e^x$ **d**) ax^2e^x **b**) ae^x c) axe^x e) none of these **a**) *a* 11. (5 points) Suppose the matrix equation $\mathbf{A}\vec{\mathbf{X}} = \vec{\mathbf{b}}$ has at least one solution. If the

11. (5 points) Suppose the matrix equation $\mathbf{AX} = \mathbf{b}$ has at least one solution. If the determinant of \mathbf{A} is 0, then which method should be used to solve for $\mathbf{\vec{X}}$?

a) Cramer's Rule Method

b) | Matrix Reduction Method

c) Matrix Inverse Method

d) Any of the above could be used successfully

e) None of the above.

C. Jacobs Spring 2020 12. (30 points) Let \mathbf{A} , $\vec{\mathbf{X}}$ and $\vec{\mathbf{b}}$ be defined as follows:

$$\mathbf{A} = \begin{pmatrix} -1 & 0\\ 2 & -1 \end{pmatrix} \qquad \vec{\mathbf{X}} = \begin{pmatrix} x\\ y \end{pmatrix} \qquad \vec{\mathbf{b}} = \begin{pmatrix} 2\\ 1 \end{pmatrix}$$

a) Find \mathbf{A}^{-1} (the inverse of \mathbf{A}) or show that no inverse exists.

$$\mathbf{A}^{-1} = \begin{pmatrix} -1 & 0\\ -2 & -1 \end{pmatrix}$$

b) Solve $\mathbf{A}\vec{\mathbf{X}} = \vec{\mathbf{b}}$

$$\vec{\mathbf{X}} = \mathbf{A}^{-1}\vec{\mathbf{b}} = \begin{pmatrix} -1 & 0\\ -2 & -1 \end{pmatrix} \begin{pmatrix} 2\\ 1 \end{pmatrix} = \begin{pmatrix} -2\\ -5 \end{pmatrix}$$

c) Find a non-zero vector \vec{X} that solves the equation $A\vec{X} = -\vec{X}$ or show that no such vector \vec{X} exists.

 $\mathbf{A}\vec{\mathbf{X}} = -\vec{\mathbf{X}}$ can be rewritten as $(\mathbf{A} + \mathbf{I})\vec{\mathbf{X}} = \vec{\mathbf{0}}$ which means that $\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. If we multiply out, we get $\begin{pmatrix} 2x \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. This can only happen if x = 0. There is no restriction on y, so the general solution is:

$$\vec{\mathbf{X}} = \begin{pmatrix} 0\\ y \end{pmatrix} = y \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Thus, any nonzero multiple of $\begin{pmatrix} 0\\1 \end{pmatrix}$ will be a nonzero vector that solves $\mathbf{A}\vec{\mathbf{X}} = -\vec{\mathbf{X}}$

13. (21 points) Use the method of undetermined coefficients to solve the following differential equation. Show all work.

$$(D^2 + 1) y = e^x + e^{-x}$$
 where $y(0) = 0$ and $y'(0) = 0$

The homogeneous solution will be $y_h = c_1 \cos x + c_2 \sin x$. The particular solution will have the general form of $y_p = ae^x + be^{-x}$. Substitute this into the differential equation to find a and b

$$(D^2 + 1)(ae^x + be^{-x}) = e^x + e^{-x}$$

 $2ae^x + 2be^{-x} = e^x + e^{-x}$

This can only happen if $a = \frac{1}{2}$ and $b = \frac{1}{2}$. The general solution is therefore:

$$y = c_1 \cos x + c_2 \sin x + \frac{1}{2} \left(e^x + e^{-x} \right)$$

The initial conditions imply that $c_1 = -1$ and $c_2 = 0$. This leaves us with:

$$y = -\cos x + \frac{1}{2}(e^x + e^{-x}) = -\cos x + \cosh x$$