World Population

1800	1 billion
1930	2 billion
1960	3 billion
1974	4 billion
1987	5 billion
1999	6 billion
2011	7 billion
2045	9 billion

Malthusian Growth Model:

$$\frac{dy}{dt} = ky$$

$$y = y_0 e^{kt}$$

Projected World Population

If $\frac{dy}{dt} = ky$ then:

$$\frac{y'}{y} = k$$

Thus, the Malthusian Model assumes that the rate of growth *per individual* remains constant no matter how large the population is.

More realistic model:

More realistic model:

$$\frac{y'}{y} = my + b$$

More realistic model:

$$\frac{y'}{y} = -ay + b$$
$$\frac{y'}{y} = a\left(-y + \frac{b}{a}\right)$$

Let $L = \frac{b}{a}$

$$\frac{y'}{y} = a \left(L - y\right)$$
$$y' = a(L - y)y$$

This is called the *Logistics Equation*

$$\frac{dy}{dt} = a(L-y)y = aLy - ay^2$$

This is a special case of Bernoulli's Equation

Jakob Bernoulli

In 1696, Bernoulli solved the equation:

$$\frac{dy}{dt} + P(t)y = Q(t)y^n$$

The substitution

$$v = y^{1-n}$$

transforms $\frac{dy}{dt} + P(t)y = Q(t)y^n$ into a first order linear differential equation.

The substitution

$$v = y^{1-n}$$

transforms $\frac{dy}{dt} + P(t)y = Q(t)y^n$ into a first order linear differential equation.

The logistics equation

$$\frac{dy}{dt} = aLy - ay^2$$

is a special case of Bernoulli's equation where n=2