Part I - Multiple Choice Section

1. The solution of the equation $(D^2-1)y=x^2$ has the form $y=y_h+y_p$, where y_h is then homogeneous solution and y_p is a particular solution. Which of the following is the general form of the particular solution.

a)
$$y_p = a_1 e^x + a_2 e^{-x}$$

b)
$$u_n = a_1 + a_2 x + a_3 x^2$$

b)
$$y_p = a_1 + a_2 x + a_3 x^2$$
 c) $y_p = a_1 e^x + a_2 e^{-x} + a_3 x^2$

d)
$$y_p = a_1 x + a_2 x^2 + a_3 x^3$$

d)
$$y_p = a_1 x + a_2 x^2 + a_3 x^3$$
 e) $y_p = a_1 e^x + a_2 e^{-x} + a_3 x + a_4 x^2$

2. The solution of the equation $(D^2 - D)y = 1 + e^x$ has the form $y = y_h + y_p$, where y_h is then homogeneous solution and y_p is a particular solution. Which of the following is the general form of the particular solution.

a)
$$y_p = a_1 x^2 + a_2 e^x$$

b)
$$y_p = a_1 x^2 e^x$$

c)
$$y_n = a_1 + a_2 x + a_3 e^x$$

d)
$$y_p = a_1 + a_2 x e^x$$

e)
$$y_p = a_1 x + a_2 x e^x$$

3. The particular solution of the equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 4y = 2\cos 2x - 4\sin 2x$ has a particular solution with the general form $y_p = A\cos 2x + B\sin 2x$. Calculate the coefficient A.

a)
$$A=0$$

b)
$$A = 1$$

c)
$$A = -1$$

d)
$$A = 2$$

c)
$$A = -1$$
 d) $A = 2$ e) $A = -2$

4. What is the annihilator of $xe^x + x$?

a)
$$(D-1)^2$$

b)
$$2D^2 - 1$$

c)
$$(D^2-1)^2$$

b)
$$2D^2 - 1$$
 c) $(D^2 - 1)^2$ **d)** $D^2(D - 1)^2$ **e)** $D^2(D^2 - 1)$

e)
$$D^2(D^2-1)$$

5. Find the inverse Laplace transform of the following expression:

$$\frac{s}{(s+1)(s+2)}$$

a)
$$e^{-2t} + e^{-t}$$

b)
$$e^{-2t} - 2e^{-t}$$

c)
$$2e^{-2t} - e^{-t}$$

d)
$$2e^{2t} - e^t$$

e)
$$e^{-3t}$$

6. Find the inverse Laplace transform of the following expression:

$$\frac{s}{s^2 - 4s + 5}$$

a)
$$e^{2t} (\cos t + 2\sin t)$$

b)
$$e^t(\cos 2t + \sin 2t)$$

c)
$$e^{-2t}(2\cos t + \sin t)$$

$$\mathbf{d}) \ e^{2t} \cos t$$

e)
$$t + e^{-2t} \sin t$$

7. Suppose y = y(t) is the solution of the following initial value problem:

$$y'' - 4y' + 4y = 0$$
 where $y(0) = 1$ and $y'(0) = 2$

Which of the following would equal $\mathcal{L}(y)$?

a)
$$\frac{1}{(s-2)^2}$$

b)
$$\frac{s}{(s-1)^2}$$
 c) $\frac{1}{s-2}$

c)
$$\frac{1}{s-2}$$

d)
$$\frac{1}{s+2}$$

e)
$$\frac{s+1}{(s-1)^2}$$

8. Use the Exponential Shift Theorem to simplify the following:

$$(D-2)^4 \left(\left(x^3 + \cos x \right) e^{2x} \right)$$

9. Find the general solution of the following equation. Show all work.

$$(D+1)^2y = e^{-x}$$

10.

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{3}{\sqrt{x}}e^x$$

- a) If we were to use the method of variation of parameters to solve this problem, we would need to calculate a determinant called the *Wronskian*. Calculate the Wronskian for this problem.
- b) Solve this differential equation. Show all work.
- 11. A spring is arranged horizontally. The mass at the end of the spring is m=1 kilogram. The damping constant is $\beta=4$ kilograms/sec. The spring constant is k=4 kilograms/sec². There is an additional force of $f(t)=6t^2e^{-2t}$ acting on the mass. Let y(t) be the position of the mass relative to its equilibrium position after t seconds and it satisfies the initial conditions y(0)=y'(0)=0. Use the method of Laplace transforms to find the formula for y(t). Show all work.
- 12. Solve the following differential equation:

$$\frac{d^2y}{dt^2} + y = 2t \cdot \mathcal{U}\left(t - \frac{\pi}{2}\right)$$
 where $y(0) = 0, \ y'(0) = 1$