MA 345 Practice Exam III Dr. E. Jacobs

1. The solution of the equation $(D^2 - 1)y = x^2$ has the form $y = y_h + y_p$, where y_h is then *homogeneous* solution and y_p is a *particular* solution. Which of the following is the general form of the particular solution.

a)
$$y_p = a_1 e^x + a_2 e^{-x}$$

b) $y_p = a_1 + a_2 x + a_3 x^2$
c) $y_p = a_1 e^x + a_2 e^{-x} + a_3 x^2$
d) $y_p = a_1 x + a_2 x^2 + a_3 x^3$
e) $y_p = a_1 e^x + a_2 e^{-x} + a_3 x + a_4 x^2$

2. The solution of the equation $(D^2 - D)y = 1 + e^x$ has the form $y = y_h + y_p$, where y_h is then *homogeneous* solution and y_p is a *particular* solution. Which of the following is the general form of the particular solution.

a) $y_p = a_1 x^2 + a_2 e^x$ b) $y_p = a_1 x^2 e^x$ c) $y_p = a_1 + a_2 x + a_3 e^x$ d) $y_p = a_1 + a_2 x e^x$ e) $y_p = a_1 x + a_2 x e^x$ **3.** The particular solution of the equation

 $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 4y = 2\cos 2x - 4\sin 2x$ has a particular solution with the general form $y_p = A\cos 2x + B\sin 2x$. Calculate the coefficient A.

a) A = 0 **b)** A = 1 **c)** A = -1 **d)** A = 2 **e)** A = -2

4. What is the annihilator of $xe^{x} + x$? a) $(D-1)^{2}$ b) $2D^{2}-1$ c) $(D^{2}-1)^{2}$ d) $D^{2}(D-1)^{2}$ e) $D^{2}(D^{2}-1)$ **5.** Find the inverse Laplace transform of the following expression:

a)
$$e^{-2t} + e^{-t}$$

b) $e^{-2t} - 2e^{-t}$
c) $2e^{-2t} - e^{-t}$
d) $2e^{2t} - e^{t}$
e) e^{-3t}

6. Find the inverse Laplace transform of the following expression:

$$\frac{3}{s^2 - 4s + 5}$$

a) $e^{2t} (\cos t + 2\sin t)$ b) $e^t (\cos 2t + \sin 2t)$ c) $e^{-2t} (2\cos t + \sin t)$ d) $e^{2t} \cos t$ e) $t + e^{-2t} \sin t$ 7. Suppose y = y(t) is the solution of the following initial value problem:

$$y'' - 4y' + 4y = 0$$
 where $y(0) = 1$ and $y'(0) = 2$

Which of the following would equal $\mathcal{L}(y)$?

a)
$$\frac{1}{(s-2)^2}$$
 b) $\frac{s}{(s-1)^2}$ **c)** $\frac{1}{s-2}$ **d)** $\frac{1}{s+2}$ **e)** $\frac{s+1}{(s-1)^2}$

8. Use the Exponential Shift Theorem to simplify the following:

 $(D-2)^4 \left(\left(x^3 + \cos x \right) e^{2x} \right)$

9. Find the general solution of the following equation. Show all work.

$$(D+1)^2 y = e^{-x}$$

10.

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{3}{\sqrt{x}}e^x$$

a) If we were to use the method of variation of parameters to solve this problem, we would need to calculate a determinant called the *Wronskian*. Calculate the Wronskian for this problem.

b) Solve this differential equation. Show all work.

11. A spring is arranged horizontally. The mass at the end of the spring is m = 1 kilogram. The damping constant is $\beta = 4$ kilograms/sec. The spring constant is k = 4 kilograms/sec². There is an additional force of $f(t) = 6t^2e^{-2t}$ acting on the mass. Let y(t) be the position of the mass relative to its equilibrium position after t seconds and it satisfies the initial conditions y(0) = y'(0) = 0. Use the method of Laplace transforms to find the formula for y(t). Show all work.

12. Solve the following differential equation:

$$\frac{d^2y}{dt^2} + y = 2t \cdot \mathcal{U}\left(t - \frac{\pi}{2}\right) \qquad \text{where } y(0) = 0, \ y'(0) = 1$$