$\frac{\mathbf{MA 345}}{\mathbf{1.} \text{ Let } \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \text{ find the general solution of the matrix} equation <math>\frac{d\mathbf{\vec{X}}}{dt} = \mathbf{A}\mathbf{\vec{X}}.$

2. If we substitute $y = \sum a_n x^n$ into the differential equation $\frac{d^2y}{dx^2} - 2y = 0$, we will get a formula relating a_{n+2} to a_n (the recurrence relation). Find this formula.

3. Find the general solution y = y(t) of each of the following differential equations:

a)
$$\frac{d^2y}{dt^2} - 5\frac{dy}{dt} + 6y = 0$$
 b) $\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 9y = 0$

4. Use method of undetermined coefficients to solve the following nonhomogeneous equation:

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 3y = e^{3t}$$

5. Solve using Laplace transforms:

$$\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 9y = e^{3t}\mathcal{U}(t-1) \qquad \text{where } y(0) = 0 \text{ and } y'(0) = 0$$

6. Solve the differential equation:

$$(2xy + \sqrt{y}) dx + \frac{1}{2}x^2 dy = 0$$
 where $y(1) = 1$

7. One of the following numbers is an eigenvalue of $\begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$. Which one?

a) -2 b) -1 c) 0 d) 2 e) 3

8. One of the following vectors is an eigenvector of $\begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$. Which one?

a) $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ e) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

9. Let $\mathcal{U}(t)$ denote the unit step function. Find the Laplace transform of $e^t \mathcal{U}(t-2)$

a)
$$\frac{e^{1-2s}}{s-2}$$
 b) $\frac{e^{2-2s}}{s-1}$ c) $\frac{e^{-s}}{s-2}$ d) $\frac{e^{-s}}{s-1}$ e) $\frac{e^{2-s}}{s-1}$

10. Find the inverse Laplace transform of $\frac{s}{(s+1)(s+2)}$ **a)** $e^{-2t} + 2e^{-t}$ **b)** $e^{-t} - e^{-2t}$ **c)** $2e^{-2t} - e^{-t}$ **d)** $e^t + 2e^{2t}$ **e)** $e^t + e^{2t}$ 11. Which of the following would be an integrating factor μ for the differential equation:

$$y^{2}dx + (e^{x} - 2y) dy = 0$$

a) $\frac{1}{y^{2}}$ b) e^{x} c) e^{y} d) e^{-x} e) e^{-y}

12. Let y = y(x) be the solution of the equation $\frac{dy}{dx} = \frac{y}{x} + \frac{x}{y}$. If we make the substitution $v = \frac{y}{x}$, which of the following will be the resulting equation that determines v = v(x)?

a)	$\frac{dv}{dx} = v + \frac{1}{v}$	b)	$\frac{dv}{dx} = \frac{v}{x}$	c)	$\frac{dv}{dx} = \frac{x}{v}$
d)	$\frac{dv}{dx} = xv$	e)	$\frac{dv}{dx} = \frac{1}{xv}$		

13. If the Method of Undetermined Coefficients was used to solve the differential equation $\frac{d^2y}{dx^2} - y = e^{2x} + x^2$, which of the following would be the general form of the particular solution y_p ?

a) $ae^{2x} + bx^2$ b) $ae^{2x} + b_1 + b_2x + b_3x^2$

c)
$$ax^2e^{2x}$$

b)
$$ae^{-x} + b_1 + b_2x + b_3x$$

d) $ae^x + be^{-x}$

e)
$$ae^x + be^{-x} + c_1e^{2x} + c_2x^2$$

14. The general form of the particular solution of y'' - y' = xis $y_p = ax + bx^2$. Find the coefficient ba) $-\frac{1}{2}$ b) -1 c) 0 d) 1 e) $\frac{1}{2}$ 15. According to the Exponential Shift Theorem, the expression $(D+1)^4 (e^{-x} \sin x)$ is equal to:

a) $e^{-x} \sin x$ b) $-e^{-x} \cos x$ c) $e^{-x} (\sin x + \cos x)$ d) $e^{-x} (\sin x - \cos x)$ e) $e^{-x} + \sin x$ 16. The expression $y = c_1 e^{-x} \sin x + c_2 e^{-x} \cos x$ is the general solution for one of the following differential equations. Which one?

a) $(D^2 - 1)y = 0$

c)
$$(D^2 - 2D + 1)y = 0$$

e) $(D^2 + 2D + 1)y = 0$

b) $(D^2 + 2D + 2)y = 0$

d)
$$(D^2 - 2D + 2)y = 0$$