Differential Equations and Matrix Methods
Dr. E. Jacobs

Matrix Equation - Projection Example



projy X means the projection X in the direction of v
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Let ¥ = 241+ :1;2} and let v = 11 + 1}
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This is now in the form y = AX.



Solve the equation AX = 0
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Solve the equation AX = 0
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This can only happen if:
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Let t = x5, s0o x1 = —t
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Solve for X :
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—x1 + 22 =0 x1 — 22 =0

Either way, we get x1 = xo. Let t = x9
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The solution of AX = X is any scalar multiple of Vv

projg v =v
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We have just found a nonzero solution of AX = X

More generally, we're going to consider equations of
the form:

AX = XX

If X # 0 then X is called an eigenvector
The scalar A is called an eigenvalue.






AX = \X
(A-ADX =0

If this equation has a nonzero solution then A — Al
has no inverse

det(A — AI) =0

This is called the characteristic equation. The solu-
tions are the eigenvalues.
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Solve for A so that det(A — AI) =0
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The solutions are A = 0 and A = 1. These are the
eigenvalues.
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If A\=0and A =1 are the eigenvalues then each of
the following equations have nonzero solutions.

AX =0x AX =1x
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A= (1 2 1 /z)
If A\=0and A =1 are the eigenvalues then each of
the following equations have nonzero solutions.

AX =0x AX =1x

Eigenvectors:
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Example: Reflection




Example: Reflection







Calculate the eigenvalues and eigenvectors of ((1)
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Solve the characteristic equation det(A — A\I) =0
0 1 1 0 —A 1
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det(A — AXI) = \* — 1
det(A —AI) =0 when X\=+1



Eigenvalues:

Eigenvectors:

A=1

Ax =1
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Eigenvalues: A=1 A= —1
AX=1X AX=(-1)X

Eigenvectors:
Brief Intermission
Pause the video and find the eigenvectors of ((1)
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Eigenvalues:

Eigenvectors:

A=1

Ax =1






A=—1

AR = (—1)X




A=—1

AR = (—1)X




What’s coming in the next week?
1. More eigenvector and eigenvalue practice

2. Systems of linear differential equations
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