Differential Equations and Matrix Methods Dr. E. Jacobs

Today's Topic : Eigenvectors and Eigenvalues

The following statements are equivalent:

- 1. A has no inverse
- 2. The columns of \mathbf{A} are linearly dependent
- 3. The determinant of \mathbf{A} is zero
- 4. $\mathbf{A}\vec{\mathbf{X}} = \vec{\mathbf{0}}$ has a nontrivial solution $\vec{\mathbf{X}}$

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

The following statements are equivalent:

- 1. $\mathbf{A} \lambda \mathbf{I}$ has no inverse
- 2. The columns of $\mathbf{A} \lambda \mathbf{I}$ are linearly dependent
- 3. The determinant of $\mathbf{A} \lambda \mathbf{I}$ is zero
- 4. $(\mathbf{A} \lambda \mathbf{I})\vec{\mathbf{X}} = \vec{\mathbf{0}}$ has a nontrivial solution $\vec{\mathbf{X}}$
- 5. $\mathbf{A}\vec{\mathbf{X}} = \lambda \vec{\mathbf{X}}$ has a nontrivial solution $\vec{\mathbf{X}}$

Definition:

If $\mathbf{A}\vec{\mathbf{X}} = \lambda \vec{\mathbf{X}}$ has a nontrivial solution $\vec{\mathbf{X}}$, then λ is called an *eigenvalue* and $\vec{\mathbf{X}}$ is called an *eigenvector*. To find the eigenvalues, solve the following equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

This is called the *characteristic equation*

Definition:

If $\mathbf{A}\vec{\mathbf{U}} = \lambda \vec{\mathbf{U}}$ has a nontrivial solution $\vec{\mathbf{U}}$, then λ is called an *eigenvalue* and $\vec{\mathbf{U}}$ is called an *eigenvector*. To find the eigenvalues, solve the following equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

This is called the *characteristic equation*

Example: Find the eigenvalues and eigenvectors of the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 0\\ 9 & -2 \end{pmatrix}$$

Start with the eigenvalues by solving the characteristic equation.

$$\mathbf{A} = \begin{pmatrix} 1 & 0\\ 9 & -2 \end{pmatrix}$$
$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 0\\ 9 & -2 - \lambda \end{vmatrix} = (1 - \lambda)(-2 - \lambda)$$

 $det(\mathbf{A} - \lambda \mathbf{I}) = 0$ when $\lambda = 1$ or $\lambda = -2$ These are the eigenvalues.

$$\mathbf{A} = \begin{pmatrix} 1 & 0\\ 9 & -2 \end{pmatrix}$$

Next, find the eigenvectors. If $\lambda = 1$, then we are solving $\mathbf{A}\vec{\mathbf{U}} = 1\vec{\mathbf{U}}$

$$(\mathbf{A} - \mathbf{I})\vec{\mathbf{U}} = \vec{\mathbf{0}}$$
$$\begin{pmatrix} 0 & 0\\ 9 & -3 \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ 9 & -3 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 9u_1 - 3u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$9u_1 - 3u_2 = 0$$
$$u_2 = 3u_1$$

If we let $t = u_1$ then $u_2 = 3t$

$$\vec{\mathbf{U}} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} t \\ 3t \end{pmatrix} = t \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0\\ 9 & -2 \end{pmatrix}$$

If $\lambda = -2$ then we are solving $\mathbf{A}\vec{\mathbf{U}} = -2\vec{\mathbf{U}}$
 $(\mathbf{A} + 2\mathbf{I})\vec{\mathbf{U}} = \vec{\mathbf{0}}$
 $\begin{pmatrix} 3 & 0\\ 9 & 0 \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$

$$\begin{pmatrix} 3 & 0 \\ 9 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 3u_1 \\ 9u_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This implies that $u_1 = 0$. There is no restriction on u_2 . Let $t = u_2$

$$\vec{\mathbf{U}} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ t \end{pmatrix} = t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Let's check this answer.

$$\mathbf{A}\vec{\mathbf{U}} = \begin{pmatrix} 1 & 0\\ 9 & -2 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ -2 \end{pmatrix} = -2 \begin{pmatrix} 0\\ 1 \end{pmatrix}$$
$$\mathbf{A}\vec{\mathbf{U}} = -2\vec{\mathbf{U}}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$

Find the eigenvectors and eigenvalues

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$
$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1 - \lambda & 2 & 2 \\ 0 & 3 - \lambda & 0 \\ 0 & 4 & -1 - \lambda \end{pmatrix}$$
$$\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)(3 - \lambda)(-1 - \lambda)$$
The eigenvalues must be: $\lambda = 1$ $\lambda = 3$ $\lambda = -1$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$

Let's find the eigenvector for $\lambda=1$

$$\mathbf{A}\vec{\mathbf{U}} = 1\vec{\mathbf{U}}$$
$$(\mathbf{A} - \mathbf{I})\vec{\mathbf{U}} = \vec{\mathbf{0}}$$
$$\begin{pmatrix} 0 & 2 & 2\\ 0 & 2 & 0\\ 0 & 4 & -2 \end{pmatrix} \begin{pmatrix} u_1\\ u_2\\ u_3 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & | & 0 \\ 0 & 2 & 0 & | & 0 \\ 0 & 4 & -2 & | & 0 \end{pmatrix}$$

Apply the elementary row operations and reduce:

$$\begin{pmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The first two rows imply that $u_2 = 0$ and $u_3 = 0$ No restriction on u_1 . Let $t = u_1$.

$$\vec{\mathbf{U}} = \begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix} = t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$

tes: $\lambda = 1$ $\lambda = 3$ $\lambda = -1$
tors: $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$ $\begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$

Eigenvalues :

Eigenvectors :

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$

Hues: $\lambda = 1$ $\lambda = 3$ $\lambda = -1$
etors: $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

Eigenvalues :

Eigenvectors :

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 9 & -2 \end{pmatrix} \quad \text{had eigenvectors:} \quad \begin{pmatrix} 1 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \qquad \mathbf{P}^{-1} = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 9 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

Diagonal Matrices

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$