Differential Equations Dr. E. Jacobs

Today's Topic: The Variable Coefficient Problem

Equations with Constant Coefficients

y'' + 2y' + 2y = 0y'' + 16y' + 8y = 0

Equations with Variable Coefficients

$$y'' + xy' + 2y = 0$$
$$(1 + 4x^2) y'' + 16xy' + 8y = 0$$

Series solutions -

Solve for the coefficients $a_0, a_1, a_2, \ldots, a_n, \ldots$ so that the following series is the solution to a given differential equation.

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$
$$y = \sum a_n x^n$$

The following also mean the same thing:

$$\sum a_{n+1} x^{n+1} \qquad \sum a_{n+2} x^{n+2}$$

$$y = \sum a_n x^n$$

Also: $\sum a_{n+1} x^{n+1}$ $\sum a_{n+2} x^{n+2}$
 $y' = \sum n a_n x^{n-1}$
Also: $\sum (n+1)a_{n+1} x^n$ $\sum (n+2)a_{n+2} x^{n+1}$

$$y' = \sum n a_n x^{n-1}$$
Also: $\sum (n+1)a_{n+1}x^n \qquad \sum (n+2)a_{n+2}x^{n+1}$

$$y'' = \sum n(n-1)a_n x^{n-2}$$
Also: $\sum (n+1)na_{n+1}x^{n-1} \qquad \sum (n+2)(n+1)a_{n+2}x^n$

Example:

$$y'' + xy' + 2y = 0 \quad \text{where } y(0) = 0 \text{ and } y'(0) = 1$$
$$a_0 = y(0) = 0 \text{ and } a_1 = y'(0) = 1$$
$$y = \sum a_n x^n \text{ and } y'' = \sum (n+2)(n+1)a_{n+2}x^n$$
$$y' = \sum na_n x^{n-1} = \sum (n+1)a_{n+1}x^n$$
$$= \sum (n+2)a_{n+2}x^{n+1}$$

Example:

y'' + xy' + 2y = 0 where y(0) = 0 and y'(0) = 1 $a_0 = y(0) = 0$ and $s_1 = y'(0) = 1$ $y = \sum a_n x^n$ and $y'' = \sum (n+2)(n+1)a_{n+2}x^n$

Choose
$$y' = \sum n a_n x^{n-1}$$

$$xy' = x \sum na_n x^{n-1} = \sum na_n x^n$$

$$y'' + xy' + 2y = 0$$

$$\sum (n+2)(n+1)a_{n+2}x^n + \sum na_nx^n + 2\sum a_nx^n = 0$$

$$\sum ((n+2)(n+1)a_{n+2} + na_n + 2a_n)x^n = 0$$

This can only happen if the coefficient of x^n is 0 for each n.

$$(n+2)(n+1)a_{n+2} + (n+2)a_n = 0$$

$$(n+2)(n+1)a_{n+2} + (n+2)a_n = 0$$

For $n \ge 0$ we get:

$$a_{n+2} = \frac{-a_n}{n+1}$$

For n = 0, $a_2 = \frac{-a_0}{0+1} = 0$ For n = 1 $a_3 = \frac{-a_1}{2} = -\frac{1}{2}$ For n = 2, $a_4 = \frac{-a_2}{2+1} = 0$ For n = 3 $a_5 = \frac{-a_3}{4} = \frac{1}{(4)(2)}$

$$a_{n+2} = \frac{-a_n}{n+1}$$

For $n = 0$, $a_2 = \frac{-a_0}{0+1} = 0$ For $n = 1$ $a_3 = \frac{-a_1}{2} = -\frac{1}{2}$
For $n = 2$, $a_4 = \frac{-a_2}{2+1} = 0$ For $n = 3$ $a_5 = \frac{-a_3}{4} = \frac{1}{(4)(2)}$

 $a_6 = 0$ $a_8 = 0$ $a_{10} = 0 \cdots$

$$a_{n+2} = \frac{-a_n}{n+1}$$

For $n = 1$, $a_3 = \frac{-a_1}{2} = -\frac{1}{2}$
For $n = 3$, $a_5 = \frac{-a_3}{4} = \frac{1}{(4)(2)}$
For $n = 5$, $a_7 = \frac{-a_5}{6} = -\frac{1}{(6)(4)(2)}$
For $n = 7$, $a_9 = \frac{-a_7}{8} = \frac{1}{(8)(6)(4)(2)}$

$$a_{n+2} = \frac{-a_n}{n+1}$$

For $n = 1$, $a_3 = \frac{-a_1}{2} = -\frac{1}{2} = -\frac{1}{2^{1}1!}$
For $n = 3$, $a_5 = \frac{-a_3}{4} = \frac{1}{(4)(2)} = \frac{1}{2^{2}2!}$
For $n = 5$, $a_7 = \frac{-a_5}{6} = -\frac{1}{(6)(4)(2)} = -\frac{1}{2^{3}3!}$
For $n = 7$, $a_9 = \frac{-a_7}{8} = \frac{1}{(8)(6)(4)(2)} = \frac{1}{2^{4}4!}$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$$

= $a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7 \cdots$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$$

= $a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7 \cdots$
= $x - \frac{1}{2^1 1!} x^3 + \frac{1}{2^2 2!} x^5 - \frac{1}{2^3 3!} x^7 + \cdots$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$$

$$= a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7 \cdots$$

$$= x - \frac{1}{2^1 1!} x^3 + \frac{1}{2^2 2!} x^5 - \frac{1}{2^3 3!} x^7 + \cdots$$

$$= x \left(1 - \frac{1}{2^1 1!} x^2 + \frac{1}{2^2 2!} x^4 - \frac{1}{2^3 3!} x^6 + \cdots \right)$$

$$= x \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!} x^{2n}$$

Example:

Find a solution of the form $\sum a_n x^n$ that solves:

$$(1+4x^2)y''+16xy'+8y=0$$

where y(0) = 1, y'(0) = 0

Note that $a_0 = y(0) = 1$ and $a_1 = y'(0) = 0$

$$(1+4x^2) y'' + 16xy' + 8y = 0$$
$$y'' + 4x^2y'' + 16xy' + 8y = 0$$
$$y'' + 4x^2y'' + 16xy' + 8\sum a_n x^n = 0$$

Choices for y':

$$\sum na_n x^{n-1}$$
 $\sum (n+1)a_{n+1}x^n$ $\sum (n+2)a_{n+2}x^{n+1}$

Pick the first one

$$y'' + 4x^2y'' + 16xy' + 8y = 0$$
$$y'' + 4x^2y'' + 16\sum na_nx^n + 8\sum a_nx^n = 0$$

Choices for y'':

$$\sum n(n-1)a_n x^{n-2} \qquad \sum (n+1)na_{n+1} x^{n-1}$$
$$\sum (n+2)(n+1)a_{n+2} x^n \qquad \sum (n+3)(n+2)a_{n+3} x^{n+1}$$

$$y'' + 4x^2y'' + 16xy' + 8y = 0$$
$$y'' + 4x^2y'' + 16\sum na_nx^n + 8\sum a_nx^n = 0$$

Pick $\sum (n+2)(n+1)a_{n+2}x^n$ for the first term Pick $\sum n(n-1)a_nx^{n-2}$ for the second term

$$y'' + 4x^2y'' + 16xy' + 8y = 0$$

$$\sum (n+2)(n+1)a_{n+2}x^n + \sum 4n(n-1)a_nx^n$$

$$+ \sum 16na_nx^n + \sum 8a_nx^n = 0$$

$$\sum ((n+2)(n+1)a_{n+2} + (4n(n-1) + 16n + 8)a_n)x^n = 0$$

Each coefficient must be 0 so:

$$(n+2)(n+1)a_{n+2} + (4n(n-1) + 16n + 8)a_n = 0$$

$$(n+2)(n+1)a_{n+2} + (4n(n-1) + 16n + 8)a_n = 0$$

The equation simplifies:

 $(n+2)(n+1)a_{n+2} + (4n^2 + 12n + 8)a_n = 0$ $(n+2)(n+1)a_{n+2} + 4(n+2)(n+1)a_n = 0$ $a_{n+2} = -4a_n$

$$a_{n+2} = -4a_n$$

We already know that $a_0 = 1$ and $a_1 = 0$

For
$$n = 0$$
, $a_2 = -4a_0 = -4$
For $n = 1$, $a_3 = -4a_1 = 0$
For $n = 2$, $a_4 = -4a_2 = 4^2$
For $n = 3$, $a_5 = -4a_3 = 0$

$$a_{n+2} = -4a_n$$

We already know that $a_0 = 1$ and $a_1 = 0$

For
$$n = 0$$
, $a_2 = -4a_0 = -4$
For $n = 1$, $a_3 = -4a_1 = 0$
For $n = 2$, $a_4 = -4a_2 = 4^2$
For $n = 3$, $a_5 = -4a_3 = 0$

$$a_7 = 0$$
 $a_9 = 0$ $a_{11} = 0$...
 $a_6 = -4^3$ $a_8 = 4^4$ $a_{10} = -4^5$...

$$y = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + \cdots$$

= 1 - 4x² + 4²x⁴ - 4³x⁶ + \cdots

It's always nice if you can write the answer in summation form:

$$y = \sum_{n=0}^{\infty} (-4)^n x^{2n}$$

$$y = \sum_{n=0}^{\infty} (-4)^n x^{2n}$$

$$1 + r + r^2 + r^3 + r^4 + \dots = \frac{1}{1 - r} \quad \text{as long as } |r| < 1$$

In summation form:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

$$y = \sum_{n=0}^{\infty} (-4)^n x^{2n} = \sum_{n=0}^{\infty} (-4x^2)^n$$
$$1 + r + r^2 + r^3 + r^4 + \dots = \frac{1}{1-r} \quad \text{as long as } |r| < 1$$

In summation form:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

$$y = \sum_{n=0}^{\infty} \left(-4x^2\right)^n = \frac{1}{1 - (-4x^2)} = \frac{1}{1 + 4x^2}$$

 $r = -4x^2$. The series only converges if |r| < 1 so:

$$4x^2 < 1$$

 $-\frac{1}{2} < x < \frac{1}{2}$

Let u = u(x, y, t) be the amplitude of a wave

Let u = u(x, y, t) be the amplitude of a wave

Vibration of a drumhead:

