
The Time Rate of Change of Density

Let’s consider a more general cube with sides of
length ∆x, ∆y and ∆z and volume ∆V = ∆x∆y∆z



Let M(t) denote mass inside the cube at time t.
Since the flux through the surface S of the cube is
the rate at which the mass is passing out of the sur-
face then

ΦS = −dM

dt



Let ρ = ρ(x, y, z, t) be the density (in kilograms per
meter3) at location (x, y, z) at time t seconds. If V
denotes the interior of the solid then

M(t) =

∫ ∫ ∫
V

ρ dV

If vol(S) ≈ 0 and (x, y, z) is the center of the cube
then the mass is approximated by:

M(t) =

∫ ∫ ∫
V

ρ dV ≈ ρ vol(V )



M(t) ≈ ρ vol(V )

Therefore, the flux is approximated by:

ΦS = −dM

dt
≈ −∂ρ

∂t
vol(V )

ΦS

vol(V )
≈ −∂ρ

∂t



This approximation improves as vol(V ) −→ 0



In the limit,

lim
vol(V )→0

ΦS

vol(V )
= −∂ρ

∂t

This is the divergence of the vector field F⃗.

div F⃗ = −∂ρ

∂t



Partial Derivative Formula for div F⃗

Recall that the derivative of f(x) is given by:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h



f ′(x) = lim
h→0
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≈ f ′(x)

where the approximation improves as h → 0



We can do exactly the same sort of thing for partial
derivatives. If f = f(x, y, z) then

f
(
x+ ∆x

2 , y, z
)
− f

(
x− ∆x

2 , y, z
)

∆x
≈ ∂f

∂x

where the error in approximation → 0 as ∆x → 0



Consider the flux through the following cube:



On the front portion, n⃗ = ⟨1, 0, 0⟩

If this is a small cube, then the flux through the front
may be approximated at

(
x+ ∆x

2 , y, z
)

∫ ∫
S1

F⃗ • n⃗ dS =

∫ ∫
S1

⟨F1, F2, F3⟩ • i⃗ dy dz

=

∫ ∫
S1

F1 dy dz

≈ F1

(
x+

∆x

2
, y, z

)
∆y∆z



Flux through the back:∫ ∫
S2

F⃗ • n⃗ dS =

∫ ∫
S2

⟨F1, F2, F3⟩ • (−⃗i) dy dz

=

∫ ∫
S2

−F1 dy dz

≈ −F1

(
x− ∆x

2
, y, z

)
∆y∆z



Total approximate flux through the front and back:(
F1

(
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2 , y, z
)
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Total approximate flux through the front and back:(
F1

(
x+ ∆x

2 , y, z
)
− F1

(
x− ∆x

2 , y, z
))

∆y∆z

This is equal to:

F1

(
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2 , y, z
)
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)

∆x
·∆x∆y∆z



Total approximate flux through the front and back:(
F1

(
x+ ∆x

2 , y, z
)
− F1

(
x− ∆x

2 , y, z
))

∆y∆z

This is equal to:

F1

(
x+ ∆x

2 , y, z
)
− F1

(
x− ∆x

2 , y, z
)

∆x
·∆x∆y∆z

This is approximately equal to:

∂F1

∂x
(x, y, z)∆x∆y∆z



Flux approximation through the front and back as:

∂F1

∂x
Vol(V )



Flux approximation through the front and back as:

∂F1

∂x
Vol(V )

Through left and right sides:

∂F2

∂y
Vol(V )

Through top and bottom:

∂F3

∂z
Vol(V )



If we combine these quantities, we get the approxi-
mation of the flux through the entire surface S sur-
rounding the cube:

ΦS ≈
(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
Vol(V )

The approximation becomes better and better as the
volume shrinks to 0. Consequently, the divergence
is given by:

div F⃗ = lim
V ol(V )→0

ΦS

Vol(V )
=

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z



Example:

Let F⃗ = ⟨xy, z2 sinx, ezx⟩.

F1 = xy F2 = z2 sinx F3 = ezx

div F⃗ =
∂

∂x
(xy)+

∂

∂y

(
z2 sinx

)
+

∂

∂z
(ezx) = y+ezx



Example:

F⃗ = ⟨e−x, 0, 0⟩.

div F⃗ = ∂
∂x (e−x) + ∂

∂y (0) +
∂
∂z (0) = −e−x



∇ Notation for Divergence

We can write ∂F1

∂x + ∂F2

∂y + ∂F3

∂z as a dot product:

div F⃗ =

⟨
∂

∂x
,

∂

∂y
,

∂

∂z

⟩
• ⟨F1, F2, F3⟩

Define the notation: ∇ =

⟨
∂

∂x
,

∂

∂y
,

∂

∂z

⟩
The divergence is therefore:

div F⃗ = ∇ • F⃗



Recall that the derivative f ′(x) can be written as
Df . Compare the derivative of a function Df to the
divergence ∇ • F⃗.



Product Rule:

D(fg) = fDg + gDf



If ϕ(x, y, z) is a scalar-valued function and

F⃗ = ⟨F1(x, y, z), F2(x, y, z), F3(x, y, z)⟩ is a vector

field then ϕF⃗ is also a vector field (a scalar times a
vector) and its divergence is:

div(ϕF⃗) = ∇ • (ϕF⃗)



div(ϕF⃗) = ∇ • (ϕF⃗)

=
∂

∂x
(ϕF1) +

∂

∂y
(ϕF2) +

∂

∂z
(ϕF3)

= ϕ
∂F1

∂x
+

∂ϕ

∂x
F1 + ϕ

∂F2

∂y
+

∂ϕ

∂y
F2

+ ϕ
∂F3

∂z
+

∂ϕ

∂z
F3

= ϕ
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+

∂ϕ
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F1 +

∂ϕ
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= ϕ∇ • F⃗+∇ϕ • F⃗



Compare D(fg) = fDg + gDf to

∇ • (ϕF⃗) = ϕ∇ • F⃗+∇ϕ • F⃗



∇ • (ϕF⃗) = ϕ∇ • F⃗+∇ϕ • F⃗

Special Case:

Suppose the scalar ϕ is a constant C.

∇ϕ =
⟨

∂
∂x (C), ∂

∂y (C), ∂
∂x (C),

⟩
= ⟨0, 0, 0⟩ = 0⃗

div(CF⃗) = C∇ • F +∇C • F⃗

= C∇ • F + 0⃗ • F⃗
= C∇ • F

= C div F⃗



A fluid is incompressible if the density remains con-
stant. If ρ is the constant density and v⃗ is the ve-
locity vector field of the fluid, and F⃗ = ρv⃗ then

div F⃗ = −∂ρ

∂t

div(ρv⃗) = − ∂

∂t
(constant) = 0

ρdiv v⃗ = 0

Dividing both sides by ρ leaves us with:

div v⃗ = 0



Application to Magnetic Fields

Consider the magnetic field B⃗.



Let’s take some arbitrary point (x, y, z) and con-
struct a closed surface around it.

Gauss’s Law for Magnetism:

ΦS =

∫ ∫
S

B⃗ • n⃗ dS = 0



ΦS =

∫ ∫
S

B⃗ • n⃗ dS = 0

If flux = 0 then the flux per unit volume is also 0.

ΦS

vol(V )
= 0

Let vol(V ) → 0

∇ • B⃗ = 0



∫ ∫
S

B⃗ • n⃗ dS = 0

∇ • B⃗ = 0


