The Time Rate of Change of Density

Let’s consider a more general cube with sides of
length Az, Ay and Az and volume AV = AxAyAz
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Let M (t) denote mass inside the cube at time t.
Since the flux through the surface S of the cube is
the rate at which the mass is passing out of the sur-

face then
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Let p = p(x,vy, 2,t) be the density (in kilograms per
meter?) at location (z,y,2) at time ¢ seconds. If V
denotes the interior of the solid then
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If vol(S) =~ 0 and (z,y, z) is the center of the cube
then the mass is approximated by:
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M(t) =~ pvol(V)

Therefore, the flux is approximated by:
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This approximation improves as vol(V) — 0
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In the limit,
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This is the divergence of the vector field F.



Partial Derivative Formula for div F

Recall that the derivative of f(x) is given by:
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where the approximation improves as h — 0



We can do exactly the same sort of thing for partial
derivatives. If f = f(x,y, 2) then
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where the error in approximation — 0 as Az — 0



Consider the flux through the following cube:




On the front portion, n = (1,0, 0)
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If this is a small cube, then the flux through the front
may be approximated at (:13 + %, v, z)
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Flux through the back:
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Total approximate flux through the front and back:
(Fl (ZIJ—I—%, Y, Z) _Fl (.Z'—%, Y, Z))AyAZ



Total approximate flux through the front and back:
(F1 (:1:+ %, v, z) — I (:L' — %, Y, z)) Ay Az
This is equal to:
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Total approximate flux through the front and back:
(F1 (:1:+ %, v, z) — I (:L' — %, Y, z)) Ay Az
This is equal to:

Fl(ﬁl?‘l_%, Y, Z)_Fl(x_%a Y, =
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This is approximately equal to:

%(x,y, 2)Ax Ay Az



Flux approximation through the front and back as:
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Flux approximation through the front and back as:

oF

Through left and right sides:
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Through top and bottom:
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If we combine these quantities, we get the approxi-
mation of the flux through the entire surface S sur-
rounding the cube:
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The approximation becomes better and better as the
volume shrinks to 0. Consequently, the divergence
is given by:
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Example:

Let F = (zy, 2%sinz, e*z).

=y Fy, = 2% sinx Fs =e*x
NG, 9, 0
div F = %(xy)—l— 3y (2% sinz) + 5, (e*z) =y+e‘x






V Notation for Divergence

We can write &1 4 9F2 | 9Fs oo o (ot product:
ox 0z p
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Define the notation: V = <8a:’ 9y 8z>

The divergence is therefore:

divF=VeF



Recall that the derivative f’(x) can be written as
D f. Compare the derivative of a function D f to the
divergence V o F.



Product Rule:

D(fg) = fDg+gDf



If ¢(x,y, 2) is a scalar-valued function and

F = (Fi(z,y,2), Fa(z,y,2), F3(z,y,2)) is a vector
field then ¢F is also a vector field (a scalar times a
vector) and its divergence is:
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div(¢F) = V e (¢F)
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Compare D(fg) = fDg+ gD f to

Ve(pF)=¢VeF +VpeF



Ve (¢F)=¢VeF+VoeF
Special Case:

Suppose the scalar ¢ is a constant C.

Vo = (£(C), Z(C), Z(C),)=1(0,0,0)=0

div(CF) = CV eF +VC(C e F
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A fluid is incompressible if the density remains con-
stant. If p is the constant density and v is the ve-
locity vector field of the fluid, and F = pv then
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div(pv) = —E(constant) =0
pdivv =0

Dividing both sides by p leaves us with:

divv =0






Let’s take some arbitrary point (z,y,z) and con-
struct a closed surface around it.

Gauss’s Law for Magnetism:

@S://EoﬁdS:O
S



CDS://EoﬁdS:O
S

If flux = 0 then the flux per unit volume is also 0.
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Let vol(V) — 0
VeB=0






