1.  Surface sketching

2.  Distance formula and the equation of a sphere

3.  Basic vector operations

4.  Dot product

5.  Cross product

6.  The plane

7.  The line

8.  Vector-valued functions

9, Velocity and acceleration

10. Integrals of vector-valued functions.  Arc length

11. Introduction to partial derivatives

12. Partial derivatives - examples

13. The tangent plane and the differential

14. Chain Rule - Part 1

15. Chain Rule - Part 2

16.  Directional derivatives

17. Gradient - Part 1

18. Gradient - Part 2

19.  The potential function

20.  Introduction to double integrals

21.  Double integrals over rectangular regions

22.  Double integrals over nonrectangular regions

23.  Reversing the order of integration

24.  Polar coordinates - 1

25.  Polar coordinates - 2

26.  Area as a double integral

27.  Center of mass and centroids

28.  Triple integrals - introduction

29.  Triple Integrals in rectangular and cylindrical coordinates

30.  More triple integral practice

31.  Spherical coordinates

32.  Change of variables for multiple integrals

33.  Surface area where z = f(x,y)

34.  Surface area - parametric

35.  The torus problem

36.  Critical points

37.  Applied max-min problems

38.  More applied max-min problems